Properties

Label 4.2e4_5e3_71e2.6t10.2
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{4} \cdot 5^{3} \cdot 71^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$10082000= 2^{4} \cdot 5^{3} \cdot 71^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} - 27 x^{3} + 4 x^{2} - 71 x + 89 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 23 + \left(11 a + 9\right)\cdot 29 + \left(20 a + 16\right)\cdot 29^{2} + 18 a\cdot 29^{3} + \left(15 a + 2\right)\cdot 29^{4} + \left(23 a + 12\right)\cdot 29^{5} + \left(15 a + 26\right)\cdot 29^{6} + \left(7 a + 4\right)\cdot 29^{7} + 14\cdot 29^{8} + \left(a + 5\right)\cdot 29^{9} + \left(23 a + 19\right)\cdot 29^{10} + \left(10 a + 28\right)\cdot 29^{11} + \left(8 a + 14\right)\cdot 29^{12} + 8 a\cdot 29^{13} + \left(22 a + 26\right)\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 24 + 6\cdot 29^{2} + 9\cdot 29^{3} + 13\cdot 29^{4} + 15\cdot 29^{6} + 16\cdot 29^{7} + 6\cdot 29^{8} + 11\cdot 29^{9} + 3\cdot 29^{10} + 15\cdot 29^{11} + 13\cdot 29^{12} + 6\cdot 29^{13} + 12\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 25 + \left(16 a + 24\right)\cdot 29 + \left(25 a + 1\right)\cdot 29^{2} + \left(17 a + 21\right)\cdot 29^{3} + \left(14 a + 16\right)\cdot 29^{4} + \left(26 a + 28\right)\cdot 29^{5} + \left(10 a + 6\right)\cdot 29^{6} + \left(18 a + 9\right)\cdot 29^{7} + \left(12 a + 21\right)\cdot 29^{8} + 18\cdot 29^{9} + \left(8 a + 9\right)\cdot 29^{10} + \left(27 a + 12\right)\cdot 29^{11} + 29^{12} + \left(5 a + 20\right)\cdot 29^{13} + \left(27 a + 15\right)\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 21 + 22\cdot 29 + 16\cdot 29^{2} + 13\cdot 29^{3} + 8\cdot 29^{4} + 17\cdot 29^{5} + 8\cdot 29^{6} + 26\cdot 29^{7} + 28\cdot 29^{8} + 3\cdot 29^{9} + 17\cdot 29^{10} + 4\cdot 29^{11} + 3\cdot 29^{12} + 11\cdot 29^{13} + 18\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 9 + \left(17 a + 4\right)\cdot 29 + \left(8 a + 20\right)\cdot 29^{2} + \left(10 a + 15\right)\cdot 29^{3} + \left(13 a + 3\right)\cdot 29^{4} + \left(5 a + 27\right)\cdot 29^{5} + \left(13 a + 23\right)\cdot 29^{6} + \left(21 a + 26\right)\cdot 29^{7} + \left(28 a + 7\right)\cdot 29^{8} + \left(27 a + 10\right)\cdot 29^{9} + \left(5 a + 17\right)\cdot 29^{10} + \left(18 a + 1\right)\cdot 29^{11} + \left(20 a + 17\right)\cdot 29^{12} + \left(20 a + 4\right)\cdot 29^{13} + \left(6 a + 13\right)\cdot 29^{14} +O\left(29^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 15 + \left(12 a + 24\right)\cdot 29 + \left(3 a + 25\right)\cdot 29^{2} + \left(11 a + 26\right)\cdot 29^{3} + \left(14 a + 13\right)\cdot 29^{4} + \left(2 a + 1\right)\cdot 29^{5} + \left(18 a + 6\right)\cdot 29^{6} + \left(10 a + 3\right)\cdot 29^{7} + \left(16 a + 8\right)\cdot 29^{8} + \left(28 a + 8\right)\cdot 29^{9} + \left(20 a + 20\right)\cdot 29^{10} + \left(a + 24\right)\cdot 29^{11} + \left(28 a + 7\right)\cdot 29^{12} + \left(23 a + 15\right)\cdot 29^{13} + \left(a + 1\right)\cdot 29^{14} +O\left(29^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4,2)(5,6)$
$(1,4,5)$
$(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(2,3,6)$ $-2$
$4$ $3$ $(1,4,5)(2,3,6)$ $1$
$9$ $4$ $(1,3,4,2)(5,6)$ $0$
$9$ $4$ $(1,2,4,3)(5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.