Properties

Label 4.2e4_5e3_43e2.6t10.4
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{4} \cdot 5^{3} \cdot 43^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$3698000= 2^{4} \cdot 5^{3} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 11 x^{4} - 14 x^{3} + 21 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 18.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 4\cdot 11 + 10\cdot 11^{3} + 10\cdot 11^{4} + 11^{5} + 6\cdot 11^{6} + 4\cdot 11^{7} + 11^{9} + 9\cdot 11^{10} + 9\cdot 11^{11} + 3\cdot 11^{12} + 8\cdot 11^{13} + 6\cdot 11^{14} + 6\cdot 11^{15} + 3\cdot 11^{16} + 10\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 10 + \left(8 a + 1\right)\cdot 11 + \left(10 a + 10\right)\cdot 11^{2} + \left(6 a + 9\right)\cdot 11^{3} + \left(7 a + 1\right)\cdot 11^{4} + \left(a + 8\right)\cdot 11^{5} + \left(8 a + 4\right)\cdot 11^{6} + \left(10 a + 8\right)\cdot 11^{7} + \left(7 a + 3\right)\cdot 11^{8} + \left(2 a + 4\right)\cdot 11^{9} + 3 a\cdot 11^{10} + \left(4 a + 5\right)\cdot 11^{11} + \left(2 a + 4\right)\cdot 11^{12} + \left(4 a + 9\right)\cdot 11^{13} + \left(10 a + 7\right)\cdot 11^{14} + \left(a + 9\right)\cdot 11^{15} + \left(a + 7\right)\cdot 11^{16} + \left(9 a + 8\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 10 + 3\cdot 11 + 4\cdot 11^{2} + 7\cdot 11^{3} + 2\cdot 11^{4} + 8\cdot 11^{5} + 4\cdot 11^{6} + 5\cdot 11^{7} + 9\cdot 11^{9} + 3\cdot 11^{11} + 7\cdot 11^{12} + 10\cdot 11^{13} + 10\cdot 11^{14} + 5\cdot 11^{15} + 3\cdot 11^{16} + 10\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 2 + \left(9 a + 8\right)\cdot 11 + \left(6 a + 10\right)\cdot 11^{2} + \left(6 a + 6\right)\cdot 11^{3} + \left(6 a + 2\right)\cdot 11^{4} + \left(2 a + 7\right)\cdot 11^{5} + \left(10 a + 4\right)\cdot 11^{6} + \left(9 a + 9\right)\cdot 11^{7} + \left(a + 2\right)\cdot 11^{8} + 3 a\cdot 11^{9} + \left(4 a + 10\right)\cdot 11^{10} + \left(8 a + 10\right)\cdot 11^{11} + 7\cdot 11^{13} + \left(5 a + 9\right)\cdot 11^{14} + \left(5 a + 9\right)\cdot 11^{15} + \left(2 a + 6\right)\cdot 11^{16} + 2\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 8 + \left(a + 6\right)\cdot 11 + \left(4 a + 6\right)\cdot 11^{2} + \left(4 a + 4\right)\cdot 11^{3} + 4 a\cdot 11^{4} + 8 a\cdot 11^{5} + 10\cdot 11^{6} + \left(a + 5\right)\cdot 11^{7} + 9 a\cdot 11^{8} + 7 a\cdot 11^{9} + \left(6 a + 2\right)\cdot 11^{10} + \left(2 a + 7\right)\cdot 11^{11} + \left(10 a + 6\right)\cdot 11^{12} + \left(10 a + 6\right)\cdot 11^{13} + \left(5 a + 7\right)\cdot 11^{14} + \left(5 a + 4\right)\cdot 11^{15} + 8 a\cdot 11^{16} + \left(10 a + 1\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 1 + \left(2 a + 8\right)\cdot 11 + \left(4 a + 5\right)\cdot 11^{3} + \left(3 a + 3\right)\cdot 11^{4} + \left(9 a + 7\right)\cdot 11^{5} + \left(2 a + 2\right)\cdot 11^{6} + 10\cdot 11^{7} + \left(3 a + 2\right)\cdot 11^{8} + \left(8 a + 7\right)\cdot 11^{9} + \left(7 a + 10\right)\cdot 11^{10} + \left(6 a + 7\right)\cdot 11^{11} + \left(8 a + 9\right)\cdot 11^{12} + \left(6 a + 1\right)\cdot 11^{13} + 11^{14} + \left(9 a + 7\right)\cdot 11^{15} + \left(9 a + 10\right)\cdot 11^{16} + \left(a + 10\right)\cdot 11^{17} +O\left(11^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3,2,4)(5,6)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,2)(3,4)$ $0$
$4$ $3$ $(1,2,6)$ $-2$
$4$ $3$ $(1,2,6)(3,4,5)$ $1$
$9$ $4$ $(1,3,2,4)(5,6)$ $0$
$9$ $4$ $(1,4,2,3)(5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.