Properties

Label 4.2e4_5e3_29.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 5^{3} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$58000= 2^{4} \cdot 5^{3} \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 7 x^{3} + 6 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 12 + \left(36 a + 9\right)\cdot 71 + \left(18 a + 48\right)\cdot 71^{2} + \left(36 a + 21\right)\cdot 71^{3} + \left(56 a + 40\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 27 + \left(31 a + 33\right)\cdot 71 + \left(33 a + 11\right)\cdot 71^{2} + \left(18 a + 7\right)\cdot 71^{3} + \left(68 a + 18\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 19\cdot 71 + 70\cdot 71^{2} + 45\cdot 71^{3} + 14\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 20 + \left(39 a + 64\right)\cdot 71 + \left(37 a + 46\right)\cdot 71^{2} + \left(52 a + 10\right)\cdot 71^{3} + \left(2 a + 65\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 + 17\cdot 71 + 58\cdot 71^{2} + 51\cdot 71^{3} + 28\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 59 a + 36 + \left(34 a + 69\right)\cdot 71 + \left(52 a + 48\right)\cdot 71^{2} + \left(34 a + 4\right)\cdot 71^{3} + \left(14 a + 46\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(3,4)$$2$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,5,6)$$1$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,3,5,4,6,2)$$0$
$12$$6$$(1,5,6)(3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.