Properties

Label 4.2e4_5e3_23e2.5t3.1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 5^{3} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$1058000= 2^{4} \cdot 5^{3} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{5} + 5 x^{3} - 10 x^{2} + 5 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 6 + \left(12 a + 7\right)\cdot 19 + \left(5 a + 8\right)\cdot 19^{2} + \left(11 a + 13\right)\cdot 19^{3} + \left(11 a + 16\right)\cdot 19^{4} + \left(4 a + 17\right)\cdot 19^{5} + \left(7 a + 6\right)\cdot 19^{6} + \left(5 a + 16\right)\cdot 19^{7} + \left(a + 12\right)\cdot 19^{8} + \left(2 a + 7\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 2 + 15\cdot 19 + 16\cdot 19^{2} + 2\cdot 19^{3} + 14\cdot 19^{4} + 6\cdot 19^{5} + 11\cdot 19^{6} + 9\cdot 19^{7} + 19^{8} + 14\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ a + 5 + \left(6 a + 2\right)\cdot 19 + \left(13 a + 1\right)\cdot 19^{2} + 7 a\cdot 19^{3} + \left(7 a + 17\right)\cdot 19^{4} + \left(14 a + 10\right)\cdot 19^{5} + \left(11 a + 9\right)\cdot 19^{6} + \left(13 a + 14\right)\cdot 19^{7} + \left(17 a + 8\right)\cdot 19^{8} + \left(16 a + 8\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ a + 12 + \left(16 a + 8\right)\cdot 19 + \left(a + 3\right)\cdot 19^{2} + \left(18 a + 12\right)\cdot 19^{3} + \left(4 a + 1\right)\cdot 19^{4} + 13\cdot 19^{5} + \left(3 a + 3\right)\cdot 19^{6} + \left(9 a + 5\right)\cdot 19^{7} + \left(5 a + 9\right)\cdot 19^{8} + 12 a\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 13 + \left(2 a + 4\right)\cdot 19 + \left(17 a + 8\right)\cdot 19^{2} + 9\cdot 19^{3} + \left(14 a + 7\right)\cdot 19^{4} + \left(18 a + 8\right)\cdot 19^{5} + \left(15 a + 6\right)\cdot 19^{6} + \left(9 a + 11\right)\cdot 19^{7} + \left(13 a + 5\right)\cdot 19^{8} + \left(6 a + 7\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)(3,4)$
$(1,3,4,2,5)$
$(1,4,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(1,2)(3,4)$ $0$
$5$ $4$ $(1,4,2,3)$ $0$
$5$ $4$ $(1,3,2,4)$ $0$
$4$ $5$ $(1,3,4,2,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.