Properties

Label 4.2e4_5e3_17e2.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 5^{3} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$578000= 2^{4} \cdot 5^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 4 x^{3} + 4 x^{2} + 11 x - 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 4 + \left(5 a + 9\right)\cdot 11 + \left(6 a + 5\right)\cdot 11^{2} + 5\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(a + 5\right)\cdot 11^{6} + 8\cdot 11^{7} + \left(4 a + 4\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 4 + 11^{2} + 5\cdot 11^{3} + 5\cdot 11^{4} + 7\cdot 11^{5} + 10\cdot 11^{6} + 4\cdot 11^{7} + 4\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 5 + \left(2 a + 8\right)\cdot 11 + \left(2 a + 7\right)\cdot 11^{2} + \left(2 a + 6\right)\cdot 11^{3} + \left(5 a + 10\right)\cdot 11^{4} + \left(2 a + 7\right)\cdot 11^{5} + \left(2 a + 2\right)\cdot 11^{6} + 6 a\cdot 11^{7} + \left(9 a + 2\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 2 + \left(5 a + 4\right)\cdot 11 + \left(4 a + 4\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + \left(10 a + 4\right)\cdot 11^{4} + \left(2 a + 7\right)\cdot 11^{5} + \left(9 a + 4\right)\cdot 11^{6} + \left(10 a + 7\right)\cdot 11^{7} + \left(6 a + 9\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 8 + \left(8 a + 10\right)\cdot 11 + \left(8 a + 2\right)\cdot 11^{2} + \left(8 a + 2\right)\cdot 11^{3} + \left(5 a + 7\right)\cdot 11^{4} + \left(8 a + 1\right)\cdot 11^{5} + \left(8 a + 9\right)\cdot 11^{6} + 4 a\cdot 11^{7} + \left(a + 1\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,2,5,4)$
$(1,5,2,4)$
$(1,2)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,2)(4,5)$$0$
$5$$4$$(1,5,2,4)$$0$
$5$$4$$(1,4,2,5)$$0$
$4$$5$$(1,3,2,5,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.