Properties

Label 4.2e4_5e3_13e3.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 5^{3} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$4394000= 2^{4} \cdot 5^{3} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 12 x^{5} - 7 x^{4} - 20 x^{3} + 20 x^{2} + 40 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 457 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 123\cdot 457 + 149\cdot 457^{2} + 50\cdot 457^{3} + 407\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 243\cdot 457 + 41\cdot 457^{2} + 433\cdot 457^{3} + 430\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 130 + 360\cdot 457 + 146\cdot 457^{2} + 138\cdot 457^{3} + 454\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 230 + 26\cdot 457 + 4\cdot 457^{2} + 347\cdot 457^{3} + 277\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 301 + 39\cdot 457 + 129\cdot 457^{2} + 67\cdot 457^{3} + 336\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 306 + 251\cdot 457 + 40\cdot 457^{2} + 381\cdot 457^{3} + 274\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 383 + 219\cdot 457 + 139\cdot 457^{2} + 134\cdot 457^{3} + 436\cdot 457^{4} +O\left(457^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 442 + 106\cdot 457 + 263\cdot 457^{2} + 276\cdot 457^{3} + 124\cdot 457^{4} +O\left(457^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(3,5)(7,8)$
$(1,8)(2,4)(3,6)(5,7)$
$(1,3)(2,7)(4,5)(6,8)$
$(1,2,4,6)(3,7,5,8)$
$(1,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,7)(4,5)(6,8)$$-4$
$2$$2$$(1,4)(2,6)(3,5)(7,8)$$0$
$2$$2$$(1,3)(4,5)$$0$
$2$$2$$(1,5)(2,6)(3,4)(7,8)$$0$
$4$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$4$$4$$(1,2,4,6)(3,7,5,8)$$0$
$4$$4$$(1,6,4,2)(3,8,5,7)$$0$
$4$$4$$(1,2,3,7)(4,8,5,6)$$0$
$4$$4$$(1,5,3,4)(6,8)$$0$
$4$$4$$(1,4,3,5)(6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.