Properties

Label 4.2e4_5e3_13e3.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 5^{3} \cdot 13^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$4394000= 2^{4} \cdot 5^{3} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} - 8 x^{5} + 28 x^{4} - 42 x^{3} + 11 x^{2} + 20 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 18 + 27\cdot 97 + 50\cdot 97^{2} + 11\cdot 97^{3} + 17\cdot 97^{4} + 96\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 23\cdot 97 + 68\cdot 97^{2} + 97^{3} + 57\cdot 97^{4} + 80\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 50 + 25\cdot 97 + 18\cdot 97^{2} + 93\cdot 97^{3} + 91\cdot 97^{4} + 26\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 71 + 33\cdot 97 + 89\cdot 97^{2} + 5\cdot 97^{3} + 56\cdot 97^{4} + 21\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 74 + 13\cdot 97 + 85\cdot 97^{2} + 4\cdot 97^{3} + 97^{4} + 63\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 82 + 36\cdot 97 + 48\cdot 97^{2} + 97^{3} + 67\cdot 97^{4} + 88\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 84 + 32\cdot 97 + 87\cdot 97^{2} + 78\cdot 97^{3} + 21\cdot 97^{4} + 51\cdot 97^{5} +O\left(97^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 89 + 38\cdot 97^{2} + 93\cdot 97^{3} + 75\cdot 97^{4} + 56\cdot 97^{5} +O\left(97^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,6,7,8)$
$(3,8)(4,6)$
$(1,2)(3,4)(5,7)(6,8)$
$(1,3)(2,6)(4,5)(7,8)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,5)(3,8)(4,6)$ $-4$
$2$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $0$
$2$ $2$ $(3,8)(4,6)$ $0$
$2$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$
$4$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $0$
$4$ $4$ $(1,3,2,4)(5,6,7,8)$ $0$
$4$ $4$ $(1,4,2,3)(5,8,7,6)$ $0$
$4$ $4$ $(2,5)(3,4,8,6)$ $0$
$4$ $4$ $(2,5)(3,6,8,4)$ $0$
$4$ $4$ $(1,4,7,6)(2,8,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.