Properties

Label 4.2e4_5e2_41.6t13.4c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 5^{2} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$16400= 2^{4} \cdot 5^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 6 x^{3} - 14 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 26 + \left(15 a + 22\right)\cdot 37 + \left(29 a + 16\right)\cdot 37^{2} + \left(30 a + 23\right)\cdot 37^{3} + \left(31 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 15\cdot 37 + 27\cdot 37^{2} + 6\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 25 + 21 a\cdot 37 + \left(7 a + 8\right)\cdot 37^{2} + \left(6 a + 6\right)\cdot 37^{3} + \left(5 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 18 + \left(20 a + 14\right)\cdot 37 + \left(22 a + 30\right)\cdot 37^{2} + \left(26 a + 32\right)\cdot 37^{3} + \left(11 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 + 9\cdot 37 + 2\cdot 37^{2} + 36\cdot 37^{3} + 22\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 21 + \left(16 a + 11\right)\cdot 37 + \left(14 a + 26\right)\cdot 37^{2} + \left(10 a + 5\right)\cdot 37^{3} + \left(25 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(3,5)$$0$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)(2,4,6)$$1$
$4$$3$$(1,3,5)$$-2$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$-1$
$12$$6$$(2,4,6)(3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.