Properties

Label 4.2e4_5e2_31e3.8t35.8
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 2^{4} \cdot 5^{2} \cdot 31^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$11916400= 2^{4} \cdot 5^{2} \cdot 31^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{5} - 8 x^{4} + 10 x^{3} - 7 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 26 + \left(7 a + 6\right)\cdot 29 + \left(28 a + 6\right)\cdot 29^{2} + \left(20 a + 12\right)\cdot 29^{3} + \left(21 a + 8\right)\cdot 29^{4} + \left(26 a + 24\right)\cdot 29^{5} + \left(14 a + 7\right)\cdot 29^{6} + \left(2 a + 12\right)\cdot 29^{7} + \left(5 a + 11\right)\cdot 29^{8} + \left(8 a + 20\right)\cdot 29^{9} + 19 a\cdot 29^{10} + \left(28 a + 8\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 13 + \left(2 a + 23\right)\cdot 29 + \left(18 a + 13\right)\cdot 29^{2} + \left(17 a + 27\right)\cdot 29^{3} + \left(23 a + 16\right)\cdot 29^{4} + \left(27 a + 6\right)\cdot 29^{5} + \left(10 a + 23\right)\cdot 29^{6} + \left(15 a + 13\right)\cdot 29^{7} + \left(5 a + 23\right)\cdot 29^{8} + \left(3 a + 1\right)\cdot 29^{9} + \left(18 a + 24\right)\cdot 29^{10} + \left(16 a + 7\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 16 + \left(21 a + 19\right)\cdot 29 + 23\cdot 29^{2} + \left(8 a + 1\right)\cdot 29^{3} + \left(7 a + 9\right)\cdot 29^{4} + \left(2 a + 20\right)\cdot 29^{5} + \left(14 a + 26\right)\cdot 29^{6} + \left(26 a + 9\right)\cdot 29^{7} + \left(23 a + 5\right)\cdot 29^{8} + \left(20 a + 27\right)\cdot 29^{9} + \left(9 a + 1\right)\cdot 29^{10} + 16\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 7 a + \left(24 a + 10\right)\cdot 29 + \left(19 a + 15\right)\cdot 29^{2} + \left(11 a + 3\right)\cdot 29^{3} + \left(13 a + 21\right)\cdot 29^{4} + \left(21 a + 1\right)\cdot 29^{5} + 26 a\cdot 29^{6} + \left(22 a + 3\right)\cdot 29^{7} + \left(19 a + 19\right)\cdot 29^{8} + \left(21 a + 9\right)\cdot 29^{9} + \left(10 a + 7\right)\cdot 29^{10} + \left(27 a + 3\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 6 + \left(4 a + 8\right)\cdot 29 + \left(9 a + 3\right)\cdot 29^{2} + \left(17 a + 13\right)\cdot 29^{3} + \left(15 a + 18\right)\cdot 29^{4} + \left(7 a + 8\right)\cdot 29^{5} + \left(2 a + 25\right)\cdot 29^{6} + \left(6 a + 3\right)\cdot 29^{7} + \left(9 a + 8\right)\cdot 29^{8} + \left(7 a + 11\right)\cdot 29^{9} + \left(18 a + 10\right)\cdot 29^{10} + \left(a + 13\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 11 + 3\cdot 29 + 25\cdot 29^{2} + 19\cdot 29^{4} + 11\cdot 29^{5} + 20\cdot 29^{6} + 17\cdot 29^{7} + 18\cdot 29^{8} + 27\cdot 29^{9} + 13\cdot 29^{10} + 10\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 15 + 28\cdot 29 + 13\cdot 29^{2} + 17\cdot 29^{3} + 21\cdot 29^{4} + 7\cdot 29^{5} + 20\cdot 29^{6} + 4\cdot 29^{7} + 23\cdot 29^{8} + 5\cdot 29^{9} + 4\cdot 29^{10} + 13\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 8 a + 2 + \left(26 a + 16\right)\cdot 29 + \left(10 a + 14\right)\cdot 29^{2} + \left(11 a + 10\right)\cdot 29^{3} + \left(5 a + 1\right)\cdot 29^{4} + \left(a + 6\right)\cdot 29^{5} + \left(18 a + 21\right)\cdot 29^{6} + \left(13 a + 21\right)\cdot 29^{7} + \left(23 a + 6\right)\cdot 29^{8} + \left(25 a + 12\right)\cdot 29^{9} + \left(10 a + 24\right)\cdot 29^{10} + \left(12 a + 14\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)$
$(6,7)$
$(1,8)(2,3)(4,7,5,6)$
$(4,5)$
$(2,8)$
$(1,3)(2,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $-4$
$2$ $2$ $(1,3)(4,5)$ $0$
$4$ $2$ $(4,5)(6,7)$ $0$
$4$ $2$ $(4,5)$ $-2$
$4$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $0$
$4$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $-2$
$4$ $2$ $(1,5)(3,4)$ $2$
$4$ $2$ $(1,3)(2,8)(4,5)$ $2$
$8$ $2$ $(1,5)(2,8)(3,4)$ $0$
$8$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$4$ $4$ $(1,5,3,4)(2,8)(6,7)$ $2$
$4$ $4$ $(1,4,3,5)(2,6,8,7)$ $0$
$4$ $4$ $(1,4,3,5)$ $-2$
$8$ $4$ $(1,2,3,8)(4,7,5,6)$ $0$
$8$ $4$ $(1,4,3,5)(2,8)$ $0$
$8$ $4$ $(1,5,3,4)(2,7)(6,8)$ $0$
$16$ $4$ $(1,8)(2,3)(4,7,5,6)$ $0$
$16$ $4$ $(1,7,5,2)(3,6,4,8)$ $0$
$16$ $8$ $(1,6,4,8,3,7,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.