Properties

Label 4.2e4_5e2_227e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 5^{2} \cdot 227^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$20611600= 2^{4} \cdot 5^{2} \cdot 227^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} - 79 x^{2} - 120 x - 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 3 + \left(5 a + 18\right)\cdot 31 + \left(23 a + 4\right)\cdot 31^{2} + \left(25 a + 19\right)\cdot 31^{3} + \left(28 a + 14\right)\cdot 31^{4} + 8 a\cdot 31^{5} + \left(13 a + 26\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 8 + \left(22 a + 26\right)\cdot 31 + \left(26 a + 7\right)\cdot 31^{2} + \left(23 a + 18\right)\cdot 31^{3} + \left(28 a + 9\right)\cdot 31^{4} + \left(28 a + 19\right)\cdot 31^{5} + \left(16 a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 28 + 12\cdot 31 + 12\cdot 31^{2} + 26\cdot 31^{3} + 10\cdot 31^{5} + 23\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 + 2\cdot 31 + 15\cdot 31^{2} + 4\cdot 31^{3} + 9\cdot 31^{4} + 25\cdot 31^{5} + 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ a + 1 + 25 a\cdot 31 + \left(7 a + 14\right)\cdot 31^{2} + \left(5 a + 16\right)\cdot 31^{3} + \left(2 a + 15\right)\cdot 31^{4} + \left(22 a + 20\right)\cdot 31^{5} + \left(17 a + 12\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 20 + \left(8 a + 2\right)\cdot 31 + \left(4 a + 8\right)\cdot 31^{2} + \left(7 a + 8\right)\cdot 31^{3} + \left(2 a + 12\right)\cdot 31^{4} + \left(2 a + 17\right)\cdot 31^{5} + \left(14 a + 1\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(2,6)(3,5)$
$(3,5)(4,6)$
$(1,6,5,2,3,4)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$9$$2$$(2,6)(3,5)$$0$
$2$$3$$(1,5,3)(2,4,6)$$-2$
$2$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,5,3)$$1$
$6$$6$$(1,6,5,2,3,4)$$0$
$6$$6$$(1,4,3,6,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.