Properties

Label 4.2e4_5e2_19e2.5t4.1
Dimension 4
Group $A_5$
Conductor $ 2^{4} \cdot 5^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$144400= 2^{4} \cdot 5^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 3 x^{3} - 3 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 12\cdot 37 + 36\cdot 37^{3} + 34\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 24 + \left(11 a + 30\right)\cdot 37 + \left(24 a + 12\right)\cdot 37^{2} + \left(20 a + 13\right)\cdot 37^{3} + \left(25 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 a + 25 + \left(3 a + 8\right)\cdot 37 + \left(13 a + 12\right)\cdot 37^{2} + \left(8 a + 3\right)\cdot 37^{3} + \left(3 a + 2\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 30 + \left(33 a + 31\right)\cdot 37 + \left(23 a + 23\right)\cdot 37^{2} + \left(28 a + 23\right)\cdot 37^{3} + \left(33 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 31 + \left(25 a + 27\right)\cdot 37 + \left(12 a + 24\right)\cdot 37^{2} + \left(16 a + 34\right)\cdot 37^{3} + \left(11 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.