Properties

Label 4.2e4_5e2_17e3.8t21.4
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 5^{2} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$1965200= 2^{4} \cdot 5^{2} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} - 8 x^{5} + 20 x^{4} - 36 x^{3} + 65 x^{2} - 66 x + 41 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 733 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 35\cdot 733 + 97\cdot 733^{2} + 279\cdot 733^{3} + 74\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 109 + 115\cdot 733 + 323\cdot 733^{2} + 85\cdot 733^{3} + 250\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 126 + 330\cdot 733 + 150\cdot 733^{2} + 218\cdot 733^{3} + 125\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 257 + 171\cdot 733 + 367\cdot 733^{2} + 68\cdot 733^{3} + 60\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 316 + 278\cdot 733 + 487\cdot 733^{2} + 330\cdot 733^{3} + 627\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 398 + 434\cdot 733 + 137\cdot 733^{2} + 359\cdot 733^{3} + 461\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 488 + 252\cdot 733 + 162\cdot 733^{2} + 150\cdot 733^{3} + 283\cdot 733^{4} +O\left(733^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 496 + 581\cdot 733 + 473\cdot 733^{2} + 707\cdot 733^{3} + 316\cdot 733^{4} +O\left(733^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3)(2,7)(4,5)(6,8)$
$(1,5)(2,6)(3,4)(7,8)$
$(1,2)(3,7)$
$(1,3,2,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-4$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,2)(3,7)$ $0$
$4$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$4$ $4$ $(1,5,3,8)(2,6,7,4)$ $0$
$4$ $4$ $(1,8,3,5)(2,4,7,6)$ $0$
$4$ $4$ $(1,3,2,7)(4,8)$ $0$
$4$ $4$ $(1,7,2,3)(4,8)$ $0$
$4$ $4$ $(1,8,2,4)(3,6,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.