Properties

Label 4.2e4_5e2_17e3.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 5^{2} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$1965200= 2^{4} \cdot 5^{2} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 3 x^{6} + 14 x^{5} - x^{4} - 22 x^{3} + 10 x^{2} + 12 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 593 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 57 + 169\cdot 593 + 591\cdot 593^{2} + 360\cdot 593^{3} + 494\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 108 + 582\cdot 593 + 186\cdot 593^{2} + 531\cdot 593^{3} + 476\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 234 + 503\cdot 593 + 12\cdot 593^{2} + 45\cdot 593^{3} + 163\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 271 + 434\cdot 593 + 120\cdot 593^{2} + 425\cdot 593^{3} + 251\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 308 + 425\cdot 593 + 524\cdot 593^{2} + 547\cdot 593^{3} + 73\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 380 + 43\cdot 593 + 250\cdot 593^{2} + 221\cdot 593^{3} + 528\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 479 + 538\cdot 593 + 223\cdot 593^{2} + 178\cdot 593^{3} + 504\cdot 593^{4} +O\left(593^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 537 + 267\cdot 593 + 461\cdot 593^{2} + 61\cdot 593^{3} + 472\cdot 593^{4} +O\left(593^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,5)(4,7)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,6,4,7)(3,8)$
$(1,5,4,2)(3,7,8,6)$
$(1,4)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $-4$
$2$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $2$ $(1,4)(6,7)$ $0$
$4$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $0$
$4$ $4$ $(1,5,4,2)(3,7,8,6)$ $0$
$4$ $4$ $(1,5,7,3)(2,6,8,4)$ $0$
$4$ $4$ $(1,3,7,5)(2,4,8,6)$ $0$
$4$ $4$ $(1,6,4,7)(3,8)$ $0$
$4$ $4$ $(1,7,4,6)(3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.