Properties

Label 4.2e4_5e2_17e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 5^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$115600= 2^{4} \cdot 5^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} - 6 x^{5} + 13 x^{4} - 20 x^{3} + 21 x^{2} - 14 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 96 + 186\cdot 409 + 176\cdot 409^{2} + 11\cdot 409^{3} + 155\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 150 + 323\cdot 409 + 37\cdot 409^{2} + 151\cdot 409^{3} + 99\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 236 + 183\cdot 409 + 294\cdot 409^{2} + 212\cdot 409^{3} + 364\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 257 + 203\cdot 409 + 187\cdot 409^{2} + 223\cdot 409^{3} + 258\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 281 + 62\cdot 409 + 235\cdot 409^{2} + 48\cdot 409^{3} + 257\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 286 + 54\cdot 409 + 100\cdot 409^{2} + 325\cdot 409^{3} + 276\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 337 + 124\cdot 409 + 309\cdot 409^{2} + 33\cdot 409^{3} + 199\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 404 + 87\cdot 409 + 295\cdot 409^{2} + 220\cdot 409^{3} + 25\cdot 409^{4} +O\left(409^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,8)(5,6)$
$(1,7)(4,5)(6,8)$
$(1,5,7,6)(2,4,3,8)$
$(1,7)(2,3)(4,8)(5,6)$
$(1,2,7,3)(4,5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $-4$
$2$ $2$ $(4,8)(5,6)$ $0$
$4$ $2$ $(1,7)(4,5)(6,8)$ $0$
$4$ $2$ $(1,5)(2,4)(3,8)(6,7)$ $0$
$4$ $2$ $(1,7)(4,6)(5,8)$ $0$
$2$ $4$ $(1,2,7,3)(4,5,8,6)$ $0$
$2$ $4$ $(1,2,7,3)(4,6,8,5)$ $0$
$4$ $4$ $(1,5,7,6)(2,4,3,8)$ $0$
$4$ $8$ $(1,4,3,6,7,8,2,5)$ $0$
$4$ $8$ $(1,4,2,5,7,8,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.