Properties

Label 4.2e4_5e2_17e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 5^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$115600= 2^{4} \cdot 5^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 4 x^{5} - 2 x^{4} + 4 x^{3} + 12 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 81 + 183\cdot 409 + 53\cdot 409^{2} + 136\cdot 409^{3} + 203\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 91 + 238\cdot 409 + 53\cdot 409^{2} + 214\cdot 409^{3} + 373\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 181 + 184\cdot 409 + 129\cdot 409^{2} + 321\cdot 409^{3} + 380\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 274 + 314\cdot 409 + 111\cdot 409^{2} + 311\cdot 409^{3} + 103\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 311 + 309\cdot 409 + 275\cdot 409^{2} + 169\cdot 409^{3} + 48\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 323 + 44\cdot 409 + 193\cdot 409^{2} + 335\cdot 409^{3} + 361\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 388 + 34\cdot 409 + 74\cdot 409^{2} + 334\cdot 409^{3} + 403\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 396 + 325\cdot 409 + 335\cdot 409^{2} + 222\cdot 409^{3} + 169\cdot 409^{4} +O\left(409^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,6,5,2,7,8)$
$(1,5)(2,4)(3,7)(6,8)$
$(1,4)(2,5)(3,8)(6,7)$
$(2,4)(6,8)$
$(1,7,5,3)(2,8,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,4)(3,7)(6,8)$$-4$
$2$$2$$(2,4)(6,8)$$0$
$4$$2$$(1,4)(2,5)(3,8)(6,7)$$0$
$4$$2$$(2,6)(3,7)(4,8)$$0$
$4$$2$$(1,7)(3,5)(6,8)$$0$
$2$$4$$(1,7,5,3)(2,8,4,6)$$0$
$2$$4$$(1,7,5,3)(2,6,4,8)$$0$
$4$$4$$(1,2,5,4)(3,6,7,8)$$0$
$4$$8$$(1,8,7,2,5,6,3,4)$$0$
$4$$8$$(1,8,3,4,5,6,7,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.