Properties

Label 4.2e4_5e2_13e3.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 5^{2} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$878800= 2^{4} \cdot 5^{2} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} + 8 x^{2} - 20 x + 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 50\cdot 53 + 7\cdot 53^{2} + 50\cdot 53^{3} + 33\cdot 53^{4} + 15\cdot 53^{5} + 7\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 50 a + 4 + \left(33 a + 17\right)\cdot 53 + 23\cdot 53^{2} + \left(32 a + 4\right)\cdot 53^{3} + \left(5 a + 36\right)\cdot 53^{4} + \left(12 a + 1\right)\cdot 53^{5} + \left(46 a + 37\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 6 + \left(44 a + 23\right)\cdot 53 + \left(7 a + 21\right)\cdot 53^{2} + \left(42 a + 38\right)\cdot 53^{3} + \left(13 a + 24\right)\cdot 53^{4} + \left(23 a + 35\right)\cdot 53^{5} + \left(19 a + 4\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 45 + \left(19 a + 49\right)\cdot 53 + \left(52 a + 44\right)\cdot 53^{2} + \left(20 a + 25\right)\cdot 53^{3} + \left(47 a + 26\right)\cdot 53^{4} + \left(40 a + 44\right)\cdot 53^{5} + \left(6 a + 50\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 45 + \left(8 a + 18\right)\cdot 53 + \left(45 a + 8\right)\cdot 53^{2} + \left(10 a + 40\right)\cdot 53^{3} + \left(39 a + 37\right)\cdot 53^{4} + \left(29 a + 8\right)\cdot 53^{5} + \left(33 a + 6\right)\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,5,3,4)$
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,2)(4,5)$$0$
$5$$4$$(1,4,2,5)$$0$
$5$$4$$(1,5,2,4)$$0$
$4$$5$$(1,2,5,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.