Properties

Label 4.2e4_5e2_13e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$67600= 2^{4} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 2 x^{5} + 5 x^{4} - 2 x^{3} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 51 + 28\cdot 389 + 342\cdot 389^{2} + 331\cdot 389^{3} + 351\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 86 + 12\cdot 389 + 9\cdot 389^{2} + 254\cdot 389^{3} + 333\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 95 + 181\cdot 389 + 100\cdot 389^{2} + 333\cdot 389^{3} + 16\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 113 + 322\cdot 389 + 132\cdot 389^{2} + 305\cdot 389^{3} + 7\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 124 + 88\cdot 389 + 269\cdot 389^{2} + 55\cdot 389^{3} + 96\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 160 + 297\cdot 389 + 103\cdot 389^{2} + 264\cdot 389^{3} + 203\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 210 + 272\cdot 389 + 17\cdot 389^{2} + 42\cdot 389^{3} + 85\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 328 + 353\cdot 389 + 191\cdot 389^{2} + 358\cdot 389^{3} + 71\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,5)(6,7)$
$(1,6)(4,7)(5,8)$
$(1,8)(5,6)$
$(1,5,8,6)(2,7,3,4)$
$(1,8)(2,3)(4,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,3)(4,7)(5,6)$ $-4$
$2$ $2$ $(1,8)(5,6)$ $0$
$4$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $0$
$4$ $2$ $(1,6)(4,7)(5,8)$ $0$
$4$ $2$ $(1,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,6)(2,7,3,4)$ $0$
$2$ $4$ $(1,6,8,5)(2,7,3,4)$ $0$
$4$ $4$ $(1,2,8,3)(4,6,7,5)$ $0$
$4$ $8$ $(1,2,6,4,8,3,5,7)$ $0$
$4$ $8$ $(1,7,6,2,8,4,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.