Properties

Label 4.2e4_5e2_13e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 5^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$67600= 2^{4} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 2 x^{5} - 8 x^{4} + 8 x^{3} + 2 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 101 + 196\cdot 389 + 261\cdot 389^{2} + 326\cdot 389^{3} + 135\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 112 + 105\cdot 389 + 46\cdot 389^{2} + 130\cdot 389^{3} + 327\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 167 + 284\cdot 389 + 69\cdot 389^{2} + 104\cdot 389^{3} + 96\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 217 + 386\cdot 389 + 14\cdot 389^{2} + 293\cdot 389^{3} + 275\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 233 + 111\cdot 389 + 174\cdot 389^{2} + 372\cdot 389^{3} + 257\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 355 + 375\cdot 389 + 365\cdot 389^{2} + 103\cdot 389^{3} + 160\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 381 + 197\cdot 389 + 264\cdot 389^{2} + 286\cdot 389^{3} + 151\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 383 + 286\cdot 389 + 358\cdot 389^{2} + 327\cdot 389^{3} + 150\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,5)(4,7)$
$(1,4,6,7)(2,3,8,5)$
$(2,8)(3,5)$
$(1,8,7,5,6,2,4,3)$
$(1,2,6,8)(3,7,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,8)(3,5)(4,7)$$-4$
$2$$2$$(2,8)(3,5)$$0$
$4$$2$$(1,6)(2,5)(3,8)$$0$
$4$$2$$(1,7)(3,5)(4,6)$$0$
$4$$2$$(1,3)(2,7)(4,8)(5,6)$$0$
$2$$4$$(1,7,6,4)(2,3,8,5)$$0$
$2$$4$$(1,4,6,7)(2,3,8,5)$$0$
$4$$4$$(1,8,6,2)(3,4,5,7)$$0$
$4$$8$$(1,8,7,5,6,2,4,3)$$0$
$4$$8$$(1,5,7,2,6,3,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.