Properties

Label 4.2e4_5_149e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 5 \cdot 149^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1776080= 2^{4} \cdot 5 \cdot 149^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} + 6 x^{2} + 8 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.2e2_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 + 25\cdot 29 + 14\cdot 29^{2} + 24\cdot 29^{3} + 3\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 17\cdot 29 + 7\cdot 29^{2} + 2\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 20 + \left(21 a + 4\right)\cdot 29 + \left(8 a + 15\right)\cdot 29^{2} + \left(12 a + 22\right)\cdot 29^{3} + \left(14 a + 23\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 5 + \left(14 a + 18\right)\cdot 29 + \left(11 a + 13\right)\cdot 29^{2} + \left(21 a + 20\right)\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 28 + \left(14 a + 11\right)\cdot 29 + \left(17 a + 27\right)\cdot 29^{2} + \left(7 a + 28\right)\cdot 29^{3} + \left(28 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 13 + \left(7 a + 9\right)\cdot 29 + \left(20 a + 8\right)\cdot 29^{2} + \left(16 a + 17\right)\cdot 29^{3} + \left(14 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,4)$
$(1,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(1,4,5)(2,3,6)$$1$
$4$$3$$(2,3,6)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,2,4,3,5,6)$$-1$
$12$$6$$(1,4,5)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.