Properties

Label 4.2e4_43e3_223e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{4} \cdot 43^{3} \cdot 223^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$14107171255504= 2^{4} \cdot 43^{3} \cdot 223^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 8 x^{2} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.43_223.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 571 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 38 + 184\cdot 571 + 300\cdot 571^{2} + 297\cdot 571^{3} + 112\cdot 571^{4} +O\left(571^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 358 + 364\cdot 571 + 173\cdot 571^{2} + 340\cdot 571^{3} + 203\cdot 571^{4} +O\left(571^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 399 + 394\cdot 571 + 557\cdot 571^{2} + 363\cdot 571^{3} + 514\cdot 571^{4} +O\left(571^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 412 + 212\cdot 571 + 558\cdot 571^{2} + 475\cdot 571^{3} + 185\cdot 571^{4} +O\left(571^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 508 + 556\cdot 571 + 122\cdot 571^{2} + 235\cdot 571^{3} + 125\cdot 571^{4} +O\left(571^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.