Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a^{2} + 11 a + 22 + \left(32 a + 13\right)\cdot 47 + \left(37 a^{2} + 13 a + 8\right)\cdot 47^{2} + \left(24 a^{2} + 11 a + 40\right)\cdot 47^{3} + \left(23 a + 27\right)\cdot 47^{4} + \left(8 a^{2} + 27 a + 23\right)\cdot 47^{5} + \left(38 a^{2} + 15 a + 43\right)\cdot 47^{6} + \left(16 a^{2} + 24 a + 23\right)\cdot 47^{7} + \left(33 a^{2} + 34 a + 43\right)\cdot 47^{8} + \left(a^{2} + 22 a + 6\right)\cdot 47^{9} + \left(45 a^{2} + 6 a + 27\right)\cdot 47^{10} + \left(18 a^{2} + 27 a + 25\right)\cdot 47^{11} + \left(15 a^{2} + 38 a + 6\right)\cdot 47^{12} + \left(16 a^{2} + 6 a + 40\right)\cdot 47^{13} + \left(39 a^{2} + 37 a + 9\right)\cdot 47^{14} + \left(3 a^{2} + 6 a + 25\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 41 + \left(18 a^{2} + 3 a + 1\right)\cdot 47 + \left(37 a^{2} + 26 a + 9\right)\cdot 47^{2} + \left(5 a^{2} + 4 a + 2\right)\cdot 47^{3} + \left(13 a^{2} + 33 a + 6\right)\cdot 47^{4} + \left(22 a^{2} + 8 a + 5\right)\cdot 47^{5} + \left(3 a^{2} + 12 a + 21\right)\cdot 47^{6} + \left(43 a^{2} + 36 a + 29\right)\cdot 47^{7} + \left(28 a^{2} + 9 a + 34\right)\cdot 47^{8} + \left(17 a^{2} + 32 a + 38\right)\cdot 47^{9} + \left(41 a^{2} + a + 19\right)\cdot 47^{10} + \left(37 a^{2} + 11 a + 16\right)\cdot 47^{11} + \left(45 a^{2} + 37 a + 20\right)\cdot 47^{12} + \left(21 a^{2} + 30 a + 4\right)\cdot 47^{13} + \left(37 a^{2} + 14 a + 6\right)\cdot 47^{14} + \left(31 a^{2} + 30 a + 34\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 a^{2} + 35 a + 13 + \left(28 a^{2} + 11 a + 23\right)\cdot 47 + \left(19 a^{2} + 7 a + 20\right)\cdot 47^{2} + \left(16 a^{2} + 31 a + 23\right)\cdot 47^{3} + \left(33 a^{2} + 37 a + 46\right)\cdot 47^{4} + \left(16 a^{2} + 10 a + 40\right)\cdot 47^{5} + \left(5 a^{2} + 19 a + 24\right)\cdot 47^{6} + \left(34 a^{2} + 33 a + 11\right)\cdot 47^{7} + \left(31 a^{2} + 2 a + 40\right)\cdot 47^{8} + \left(27 a^{2} + 39 a + 11\right)\cdot 47^{9} + \left(7 a^{2} + 38 a + 46\right)\cdot 47^{10} + \left(37 a^{2} + 8 a + 14\right)\cdot 47^{11} + \left(32 a^{2} + 18 a + 41\right)\cdot 47^{12} + \left(8 a^{2} + 9 a + 24\right)\cdot 47^{13} + \left(17 a^{2} + 42 a + 12\right)\cdot 47^{14} + \left(11 a^{2} + 9 a + 40\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 28 + 44\cdot 47 + 27\cdot 47^{2} + 20\cdot 47^{3} + 4\cdot 47^{4} + 17\cdot 47^{5} + 11\cdot 47^{6} + 12\cdot 47^{7} + 27\cdot 47^{8} + 37\cdot 47^{9} + 36\cdot 47^{10} + 35\cdot 47^{11} + 8\cdot 47^{12} + 31\cdot 47^{13} + 32\cdot 47^{14} + 3\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 42 + 12\cdot 47 + 38\cdot 47^{2} + 46\cdot 47^{3} + 16\cdot 47^{4} + 46\cdot 47^{5} + 6\cdot 47^{6} + 15\cdot 47^{7} + 17\cdot 47^{8} + 47^{9} + 23\cdot 47^{10} + 45\cdot 47^{11} + 20\cdot 47^{12} + 2\cdot 47^{13} + 25\cdot 47^{14} + 20\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 27 a^{2} + 17 a + 21 + \left(33 a^{2} + 35 a + 19\right)\cdot 47 + \left(15 a^{2} + 14 a + 12\right)\cdot 47^{2} + \left(19 a^{2} + 43 a + 41\right)\cdot 47^{3} + \left(45 a^{2} + 3 a + 9\right)\cdot 47^{4} + \left(37 a^{2} + 31 a\right)\cdot 47^{5} + \left(30 a^{2} + 46 a + 10\right)\cdot 47^{6} + \left(15 a^{2} + 18 a + 16\right)\cdot 47^{7} + \left(5 a^{2} + 27 a + 3\right)\cdot 47^{8} + \left(34 a^{2} + 27 a + 36\right)\cdot 47^{9} + \left(33 a^{2} + 24 a\right)\cdot 47^{10} + \left(36 a^{2} + 35 a + 43\right)\cdot 47^{11} + \left(44 a^{2} + 33 a + 9\right)\cdot 47^{12} + \left(7 a^{2} + 43 a + 44\right)\cdot 47^{13} + \left(13 a^{2} + 8 a + 28\right)\cdot 47^{14} + \left(5 a^{2} + 35 a\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 8 a^{2} + a + 30 + \left(11 a^{2} + 34 a + 21\right)\cdot 47 + \left(45 a^{2} + 40 a + 24\right)\cdot 47^{2} + \left(15 a^{2} + 20 a + 34\right)\cdot 47^{3} + \left(43 a^{2} + 25 a + 5\right)\cdot 47^{4} + \left(34 a^{2} + 4 a + 41\right)\cdot 47^{5} + \left(43 a^{2} + 18 a + 35\right)\cdot 47^{6} + \left(22 a^{2} + 36 a + 30\right)\cdot 47^{7} + \left(33 a^{2} + 44 a + 12\right)\cdot 47^{8} + \left(4 a^{2} + 24 a + 24\right)\cdot 47^{9} + \left(34 a^{2} + 38 a + 1\right)\cdot 47^{10} + \left(2 a^{2} + 45 a + 22\right)\cdot 47^{11} + \left(39 a^{2} + 31 a + 45\right)\cdot 47^{12} + \left(44 a^{2} + 27 a + 23\right)\cdot 47^{13} + \left(31 a^{2} + 11 a + 19\right)\cdot 47^{14} + \left(26 a^{2} + 46 a + 43\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 12 a^{2} + 29 a + 38 + \left(2 a^{2} + 24 a + 3\right)\cdot 47 + \left(33 a^{2} + 38 a\right)\cdot 47^{2} + \left(11 a^{2} + 29 a + 26\right)\cdot 47^{3} + \left(5 a^{2} + 17 a + 23\right)\cdot 47^{4} + \left(21 a^{2} + 11 a + 13\right)\cdot 47^{5} + \left(19 a^{2} + 29 a + 34\right)\cdot 47^{6} + \left(8 a^{2} + 38 a + 1\right)\cdot 47^{7} + \left(8 a^{2} + 21 a + 9\right)\cdot 47^{8} + \left(8 a^{2} + 41 a + 31\right)\cdot 47^{9} + \left(26 a^{2} + 30 a + 32\right)\cdot 47^{10} + \left(7 a^{2} + 12 a + 31\right)\cdot 47^{11} + \left(10 a^{2} + 28 a + 34\right)\cdot 47^{12} + \left(41 a^{2} + 22 a + 16\right)\cdot 47^{13} + \left(a^{2} + 26 a + 6\right)\cdot 47^{14} + \left(15 a^{2} + 12 a + 20\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,4,2)(5,7,8,6)$ |
| $(1,3,5,2)(4,7,8,6)$ |
| $(2,4)(5,7)$ |
| $(2,5)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $6$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $6$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $0$ |
| $6$ | $2$ | $(1,8)(2,7)$ | $0$ |
| $12$ | $2$ | $(2,4)(5,7)$ | $2$ |
| $12$ | $2$ | $(1,8)(2,4)(3,6)(5,7)$ | $-2$ |
| $32$ | $3$ | $(1,3,4)(5,8,6)$ | $1$ |
| $12$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |
| $24$ | $4$ | $(1,3,4,2)(5,7,8,6)$ | $0$ |
| $24$ | $4$ | $(1,7,4,3)(2,5,6,8)$ | $0$ |
| $24$ | $4$ | $(1,8)(2,4,7,5)$ | $0$ |
| $32$ | $6$ | $(1,7,6,8,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.