Properties

Label 4.2e4_3e8_5e4.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 3^{8} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$65610000= 2^{4} \cdot 3^{8} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} + 30 x^{4} - 30 x^{3} + 225 x^{2} - 450 x + 300 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 19 + 16\cdot 19^{2} + 11\cdot 19^{3} + 3\cdot 19^{4} + 4\cdot 19^{6} + 18\cdot 19^{7} + 16\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 17 + \left(8 a + 5\right)\cdot 19 + \left(17 a + 6\right)\cdot 19^{2} + \left(a + 11\right)\cdot 19^{3} + \left(18 a + 18\right)\cdot 19^{4} + 15 a\cdot 19^{5} + \left(18 a + 6\right)\cdot 19^{6} + \left(3 a + 17\right)\cdot 19^{7} + \left(8 a + 17\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 11 + 19^{2} + 8\cdot 19^{3} + 6\cdot 19^{4} + 19^{5} + 4\cdot 19^{6} + 6\cdot 19^{7} + 12\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 1 + \left(10 a + 11\right)\cdot 19 + \left(a + 15\right)\cdot 19^{2} + \left(17 a + 14\right)\cdot 19^{3} + 15\cdot 19^{4} + \left(3 a + 17\right)\cdot 19^{5} + 8\cdot 19^{6} + \left(15 a + 2\right)\cdot 19^{7} + \left(10 a + 3\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 7 + \left(14 a + 8\right)\cdot 19 + \left(3 a + 14\right)\cdot 19^{2} + \left(7 a + 3\right)\cdot 19^{3} + \left(4 a + 17\right)\cdot 19^{4} + \left(5 a + 17\right)\cdot 19^{5} + \left(4 a + 7\right)\cdot 19^{6} + \left(14 a + 1\right)\cdot 19^{7} + \left(6 a + 7\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 1 + \left(4 a + 10\right)\cdot 19 + \left(15 a + 3\right)\cdot 19^{2} + \left(11 a + 7\right)\cdot 19^{3} + \left(14 a + 14\right)\cdot 19^{4} + \left(13 a + 18\right)\cdot 19^{5} + \left(14 a + 6\right)\cdot 19^{6} + \left(4 a + 11\right)\cdot 19^{7} + \left(12 a + 18\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5,6)$
$(1,6,4,5,2,3)$
$(1,4,2)(3,6,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$9$$2$$(2,4)(3,5)$$0$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$2$$3$$(1,2,4)(3,6,5)$$-2$
$4$$3$$(3,5,6)$$1$
$6$$6$$(1,6,4,5,2,3)$$0$
$6$$6$$(1,6,4,3,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.