Properties

Label 4.2e4_3e6_13e3.6t10.1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{4} \cdot 3^{6} \cdot 13^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$25625808= 2^{4} \cdot 3^{6} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x - 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 14 + \left(2 a + 20\right)\cdot 23 + \left(5 a + 2\right)\cdot 23^{2} + \left(19 a + 16\right)\cdot 23^{3} + \left(21 a + 20\right)\cdot 23^{4} + \left(18 a + 14\right)\cdot 23^{5} + \left(11 a + 22\right)\cdot 23^{6} + \left(6 a + 21\right)\cdot 23^{7} + 21\cdot 23^{8} + \left(17 a + 7\right)\cdot 23^{9} + \left(20 a + 4\right)\cdot 23^{10} + 6 a\cdot 23^{11} + \left(5 a + 14\right)\cdot 23^{12} + \left(3 a + 14\right)\cdot 23^{13} + \left(21 a + 9\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 9 + \left(13 a + 7\right)\cdot 23 + 14\cdot 23^{2} + \left(5 a + 8\right)\cdot 23^{3} + \left(6 a + 7\right)\cdot 23^{4} + \left(10 a + 14\right)\cdot 23^{5} + \left(7 a + 9\right)\cdot 23^{6} + \left(15 a + 5\right)\cdot 23^{7} + \left(3 a + 18\right)\cdot 23^{8} + \left(15 a + 3\right)\cdot 23^{9} + \left(22 a + 1\right)\cdot 23^{10} + \left(11 a + 11\right)\cdot 23^{11} + \left(15 a + 3\right)\cdot 23^{12} + \left(3 a + 2\right)\cdot 23^{13} + 5\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 20 + \left(20 a + 21\right)\cdot 23 + \left(17 a + 10\right)\cdot 23^{2} + \left(3 a + 3\right)\cdot 23^{3} + \left(a + 22\right)\cdot 23^{4} + \left(4 a + 7\right)\cdot 23^{5} + \left(11 a + 4\right)\cdot 23^{6} + 16 a\cdot 23^{7} + \left(22 a + 16\right)\cdot 23^{8} + \left(5 a + 18\right)\cdot 23^{9} + \left(2 a + 5\right)\cdot 23^{10} + \left(16 a + 16\right)\cdot 23^{11} + \left(17 a + 17\right)\cdot 23^{12} + \left(19 a + 15\right)\cdot 23^{13} + \left(a + 2\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 8 + 9 a\cdot 23 + \left(22 a + 2\right)\cdot 23^{2} + \left(17 a + 18\right)\cdot 23^{3} + \left(16 a + 14\right)\cdot 23^{4} + \left(12 a + 5\right)\cdot 23^{5} + \left(15 a + 14\right)\cdot 23^{6} + \left(7 a + 5\right)\cdot 23^{7} + \left(19 a + 10\right)\cdot 23^{8} + \left(7 a + 7\right)\cdot 23^{9} + 8\cdot 23^{10} + \left(11 a + 12\right)\cdot 23^{11} + \left(7 a + 22\right)\cdot 23^{12} + \left(19 a + 16\right)\cdot 23^{13} + \left(22 a + 1\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 6 + 15\cdot 23 + 6\cdot 23^{2} + 19\cdot 23^{3} + 3\cdot 23^{5} + 22\cdot 23^{6} + 11\cdot 23^{7} + 17\cdot 23^{8} + 11\cdot 23^{9} + 13\cdot 23^{10} + 22\cdot 23^{11} + 19\cdot 23^{12} + 3\cdot 23^{13} + 16\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 12 + 3\cdot 23 + 9\cdot 23^{2} + 3\cdot 23^{3} + 3\cdot 23^{4} + 19\cdot 23^{6} + 8\cdot 23^{8} + 19\cdot 23^{9} + 12\cdot 23^{10} + 6\cdot 23^{11} + 14\cdot 23^{12} + 15\cdot 23^{13} + 10\cdot 23^{14} +O\left(23^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4)(5,6)$
$(2,4,5)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,6)$ $1$
$4$ $3$ $(1,3,6)(2,4,5)$ $-2$
$9$ $4$ $(1,2,3,4)(5,6)$ $0$
$9$ $4$ $(1,4,3,2)(5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.