Properties

Label 4.2e4_3e5_19e3.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{5} \cdot 19^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$26667792= 2^{4} \cdot 3^{5} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{3} + 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even
Determinant: 1.3_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 7 + 3\cdot 7^{2} + 6\cdot 7^{3} + 6\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 4 + \left(6 a + 2\right)\cdot 7 + \left(5 a + 2\right)\cdot 7^{2} + 2\cdot 7^{3} + \left(3 a + 4\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 2 + 4\cdot 7 + \left(a + 1\right)\cdot 7^{2} + \left(6 a + 4\right)\cdot 7^{3} + \left(3 a + 6\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 4\cdot 7 + 2\cdot 7^{2} + 4\cdot 7^{3} + 3\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 6\cdot 7 + \left(2 a + 4\right)\cdot 7^{2} + \left(5 a + 3\right)\cdot 7^{3} + \left(6 a + 2\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 5 + \left(6 a + 1\right)\cdot 7 + \left(4 a + 6\right)\cdot 7^{2} + \left(a + 6\right)\cdot 7^{3} + 3\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(3,4)$$-2$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$4$$3$$(1,5,6)$$1$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,3,5,4,6,2)$$0$
$12$$6$$(1,5,6)(3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.