Properties

Label 4.2e4_3e5_11e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{5} \cdot 11^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$5174928= 2^{4} \cdot 3^{5} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 3 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.3_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 33 + \left(29 a + 13\right)\cdot 37 + \left(33 a + 36\right)\cdot 37^{2} + \left(29 a + 35\right)\cdot 37^{3} + \left(18 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 5\cdot 37 + 8\cdot 37^{2} + 34\cdot 37^{3} + 23\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 22 + \left(19 a + 6\right)\cdot 37 + \left(28 a + 11\right)\cdot 37^{2} + \left(25 a + 6\right)\cdot 37^{3} + \left(8 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 + 20\cdot 37 + 29\cdot 37^{2} + 16\cdot 37^{3} + 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 33 + \left(17 a + 34\right)\cdot 37 + \left(8 a + 31\right)\cdot 37^{2} + \left(11 a + 6\right)\cdot 37^{3} + \left(28 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 5 + \left(7 a + 29\right)\cdot 37 + \left(3 a + 30\right)\cdot 37^{2} + \left(7 a + 10\right)\cdot 37^{3} + \left(18 a + 36\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(2,6)$$0$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$1$
$4$$3$$(1,2,6)$$-2$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$1$
$12$$6$$(2,6)(3,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.