Properties

Label 4.2e4_3e5_11.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{5} \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$42768= 2^{4} \cdot 3^{5} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{3} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 23\cdot 37 + 30\cdot 37^{2} + 6\cdot 37^{3} + 31\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 27\cdot 37 + 15\cdot 37^{2} + 36\cdot 37^{3} + 32\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + \left(8 a + 36\right)\cdot 37 + \left(11 a + 21\right)\cdot 37^{2} + \left(18 a + 2\right)\cdot 37^{3} + \left(5 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 35 + \left(28 a + 14\right)\cdot 37 + \left(25 a + 21\right)\cdot 37^{2} + \left(18 a + 27\right)\cdot 37^{3} + \left(31 a + 4\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 23 + \left(5 a + 25\right)\cdot 37 + \left(29 a + 10\right)\cdot 37^{2} + \left(28 a + 31\right)\cdot 37^{3} + \left(14 a + 23\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 24 + \left(31 a + 20\right)\cdot 37 + \left(7 a + 10\right)\cdot 37^{2} + \left(8 a + 6\right)\cdot 37^{3} + \left(22 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(3,4)$ $2$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $-2$
$4$ $3$ $(1,3,4)$ $1$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $0$
$12$ $6$ $(2,5,6)(3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.