Properties

Label 4.2e4_3e4_7e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 3^{4} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$63504= 2^{4} \cdot 3^{4} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} - x^{2} - 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 4 + \left(17 a + 3\right)\cdot 19 + \left(2 a + 13\right)\cdot 19^{2} + \left(6 a + 3\right)\cdot 19^{3} + \left(16 a + 10\right)\cdot 19^{4} + \left(17 a + 13\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 1 + \left(2 a + 13\right)\cdot 19 + \left(11 a + 1\right)\cdot 19^{2} + \left(9 a + 1\right)\cdot 19^{3} + 12 a\cdot 19^{4} + \left(5 a + 5\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 2\cdot 19 + 14\cdot 19^{3} + 15\cdot 19^{4} + 6\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 2\cdot 19 + 14\cdot 19^{2} + 12\cdot 19^{3} + 7\cdot 19^{4} + 18\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 13 + \left(a + 11\right)\cdot 19 + \left(16 a + 17\right)\cdot 19^{2} + \left(12 a + 6\right)\cdot 19^{3} + \left(2 a + 1\right)\cdot 19^{4} + \left(a + 15\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 12 + \left(16 a + 4\right)\cdot 19 + \left(7 a + 10\right)\cdot 19^{2} + \left(9 a + 18\right)\cdot 19^{3} + \left(6 a + 2\right)\cdot 19^{4} + \left(13 a + 17\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,5)(4,6)$
$(2,6)(3,5)$
$(2,4,6)$
$(3,5)(4,6)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$9$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-2$
$2$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,5,3)$ $1$
$6$ $6$ $(1,6,5,2,3,4)$ $0$
$6$ $6$ $(1,2,3,4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.