Properties

Label 4.2e4_3e4_5e5.5t3.2c1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 3^{4} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$4050000= 2^{4} \cdot 3^{4} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 7\cdot 19 + 19^{2} + 11\cdot 19^{3} + 19^{4} + 9\cdot 19^{5} + 18\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 1 + \left(11 a + 13\right)\cdot 19 + \left(8 a + 13\right)\cdot 19^{2} + \left(3 a + 14\right)\cdot 19^{3} + \left(13 a + 10\right)\cdot 19^{4} + \left(5 a + 14\right)\cdot 19^{5} + \left(5 a + 14\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 15 + \left(11 a + 8\right)\cdot 19 + \left(15 a + 13\right)\cdot 19^{2} + \left(15 a + 10\right)\cdot 19^{3} + \left(4 a + 17\right)\cdot 19^{4} + 10 a\cdot 19^{5} + \left(3 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 2 + \left(7 a + 14\right)\cdot 19 + \left(3 a + 17\right)\cdot 19^{2} + \left(3 a + 10\right)\cdot 19^{3} + \left(14 a + 6\right)\cdot 19^{4} + \left(8 a + 6\right)\cdot 19^{5} + \left(15 a + 1\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 12 + \left(7 a + 13\right)\cdot 19 + \left(10 a + 10\right)\cdot 19^{2} + \left(15 a + 9\right)\cdot 19^{3} + \left(5 a + 1\right)\cdot 19^{4} + \left(13 a + 7\right)\cdot 19^{5} + \left(13 a + 14\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(4,5)$
$(1,4,2,5,3)$
$(1,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,3)(4,5)$$0$
$5$$4$$(1,4,3,5)$$0$
$5$$4$$(1,5,3,4)$$0$
$4$$5$$(1,4,2,5,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.