Properties

Label 4.2e4_3e4_5e3.5t5.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{4} \cdot 5^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$162000= 2^{4} \cdot 3^{4} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 20 x^{3} + 30 x^{2} - 18 x + 154 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 87 + \left(70 a + 66\right)\cdot 101 + \left(85 a + 17\right)\cdot 101^{2} + \left(22 a + 89\right)\cdot 101^{3} + \left(50 a + 4\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 73 a + 10 + \left(72 a + 92\right)\cdot 101 + \left(12 a + 28\right)\cdot 101^{2} + \left(96 a + 60\right)\cdot 101^{3} + \left(83 a + 21\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 101 + 10\cdot 101^{2} + 15\cdot 101^{3} + 49\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 100 + \left(28 a + 6\right)\cdot 101 + \left(88 a + 7\right)\cdot 101^{2} + \left(4 a + 28\right)\cdot 101^{3} + \left(17 a + 59\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 89 a + 34 + \left(30 a + 32\right)\cdot 101 + \left(15 a + 88\right)\cdot 101^{2} + \left(78 a + 94\right)\cdot 101^{3} + \left(50 a + 81\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 2\cdot 101 + 50\cdot 101^{2} + 15\cdot 101^{3} + 86\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(1,3,2,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,6)(2,4)(3,5)$$2$
$15$$2$$(1,6)(2,3)$$0$
$20$$3$$(1,2,4)(3,5,6)$$1$
$30$$4$$(1,3,6,2)$$0$
$24$$5$$(1,4,3,2,5)$$-1$
$20$$6$$(1,3,2,5,4,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.