Properties

Label 4.2e4_3e4_5e3.5t3.1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 3^{4} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$162000= 2^{4} \cdot 3^{4} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 4 x^{3} + 4 x^{2} - x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 11 + \left(3 a + 9\right)\cdot 19 + \left(a + 16\right)\cdot 19^{2} + \left(12 a + 16\right)\cdot 19^{3} + 11\cdot 19^{4} + \left(4 a + 2\right)\cdot 19^{5} + \left(11 a + 16\right)\cdot 19^{6} + 17 a\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 16 + 10\cdot 19 + 11\cdot 19^{2} + 8\cdot 19^{3} + 17\cdot 19^{4} + 13\cdot 19^{5} + 7\cdot 19^{6} + 15\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 8 + \left(15 a + 16\right)\cdot 19 + \left(17 a + 13\right)\cdot 19^{2} + \left(6 a + 8\right)\cdot 19^{3} + 18 a\cdot 19^{4} + \left(14 a + 6\right)\cdot 19^{5} + \left(7 a + 4\right)\cdot 19^{6} + \left(a + 7\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 9 + \left(12 a + 6\right)\cdot 19 + \left(15 a + 15\right)\cdot 19^{2} + \left(a + 8\right)\cdot 19^{3} + 9 a\cdot 19^{4} + \left(7 a + 18\right)\cdot 19^{5} + \left(2 a + 16\right)\cdot 19^{6} + \left(8 a + 13\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 14 + \left(6 a + 13\right)\cdot 19 + \left(3 a + 18\right)\cdot 19^{2} + \left(17 a + 13\right)\cdot 19^{3} + \left(9 a + 7\right)\cdot 19^{4} + \left(11 a + 16\right)\cdot 19^{5} + \left(16 a + 11\right)\cdot 19^{6} + 10 a\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,4)(2,5)$
$(1,4,5,3,2)$
$(1,2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(1,3)(4,5)$ $0$
$5$ $4$ $(1,5,3,4)$ $0$
$5$ $4$ $(1,4,3,5)$ $0$
$4$ $5$ $(1,4,5,3,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.