Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 14\cdot 109 + 83\cdot 109^{2} + 42\cdot 109^{3} + 4\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 53\cdot 109 + 76\cdot 109^{2} + 7\cdot 109^{3} + 44\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 + 59\cdot 109 + 54\cdot 109^{2} + 86\cdot 109^{3} + 2\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 47 + 45\cdot 109 + 37\cdot 109^{2} + 7\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 50 + 55\cdot 109 + 68\cdot 109^{2} + 79\cdot 109^{3} + 24\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 + 24\cdot 109 + 101\cdot 109^{2} + 35\cdot 109^{3} + 59\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 59 + 68\cdot 109 + 52\cdot 109^{2} + 78\cdot 109^{3} + 89\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 71 + 6\cdot 109 + 71\cdot 109^{2} + 97\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,5)(3,6)$ |
| $(1,4,8,7)(2,6,5,3)$ |
| $(1,8)(2,5)$ |
| $(1,5)(2,8)(3,4)(6,7)$ |
| $(1,4,8,7)(2,3,5,6)$ |
| $(2,5)(4,7)$ |
| $(1,2)(3,4)(5,8)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,5)(3,6)(4,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(2,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,8)(3,4)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,7)(3,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(2,5)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,6)(3,5)(7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,7)(2,6,5,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,7,5,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,7)(2,3,5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,2)(3,7,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,5)(3,7,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,5,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.