Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3\cdot 61 + 59\cdot 61^{2} + 30\cdot 61^{3} + 28\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 + 46\cdot 61 + 49\cdot 61^{2} + 5\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 29\cdot 61 + 41\cdot 61^{2} + 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 51\cdot 61 + 41\cdot 61^{2} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 21 + 55\cdot 61 + 42\cdot 61^{2} + 39\cdot 61^{3} + 52\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 + 12\cdot 61 + 39\cdot 61^{2} + 50\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 23 + 5\cdot 61 + 57\cdot 61^{2} + 10\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 30 + 41\cdot 61 + 34\cdot 61^{2} + 47\cdot 61^{3} + 9\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,6)(3,7)$ |
| $(1,5)(2,3)(4,6)(7,8)$ |
| $(1,2,6,8)(3,4,7,5)$ |
| $(1,8,6,2)(3,4,7,5)$ |
| $(1,6)(2,8)$ |
| $(1,6)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,6)(2,8)(3,7)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(3,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,6)(3,5)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,8)(3,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,6)(7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,6,8)(3,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,6,2)(3,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,6,5)(2,7,8,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,6,4)(2,7,8,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,6,7)(2,4,8,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,6,3)(2,4,8,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.