Properties

Label 4.2e4_3e4_5e2_11e2.8t22.8c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$3920400= 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 9 x^{5} + 30 x^{4} - 27 x^{3} + 25 x^{2} - 126 x + 124 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 28 + 3\cdot 181 + 29\cdot 181^{2} + 71\cdot 181^{3} + 118\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 90\cdot 181 + 180\cdot 181^{2} + 125\cdot 181^{3} + 123\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 155\cdot 181 + 116\cdot 181^{2} + 146\cdot 181^{3} + 110\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 135\cdot 181 + 52\cdot 181^{2} + 84\cdot 181^{3} + 37\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 160\cdot 181 + 108\cdot 181^{2} + 181^{3} + 19\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 67 + 180\cdot 181 + 103\cdot 181^{2} + 181^{3} + 41\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 145\cdot 181 + 135\cdot 181^{2} + 115\cdot 181^{3} + 60\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 126 + 34\cdot 181 + 177\cdot 181^{2} + 176\cdot 181^{3} + 31\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,4)(3,5)(6,8)$
$(1,8)(2,4)(3,5)(6,7)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,6)(7,8)$
$(1,6)(4,5)$
$(1,6)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,3)(4,5)(7,8)$$-4$
$2$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$2$$2$$(1,4)(2,7)(3,8)(5,6)$$0$
$2$$2$$(1,6)(2,3)$$0$
$2$$2$$(1,2)(3,6)(4,7)(5,8)$$0$
$2$$2$$(1,6)(4,5)$$0$
$2$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$2$$2$$(2,3)(4,5)$$0$
$2$$2$$(1,8)(2,4)(3,5)(6,7)$$0$
$2$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$2$$4$$(1,2,6,3)(4,7,5,8)$$0$
$2$$4$$(1,7,6,8)(2,5,3,4)$$0$
$2$$4$$(1,4,6,5)(2,8,3,7)$$0$
$2$$4$$(1,5,6,4)(2,8,3,7)$$0$
$2$$4$$(1,3,6,2)(4,7,5,8)$$0$
$2$$4$$(1,8,6,7)(2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.