Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 28 + 3\cdot 181 + 29\cdot 181^{2} + 71\cdot 181^{3} + 118\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 44 + 90\cdot 181 + 180\cdot 181^{2} + 125\cdot 181^{3} + 123\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 57 + 155\cdot 181 + 116\cdot 181^{2} + 146\cdot 181^{3} + 110\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 64 + 135\cdot 181 + 52\cdot 181^{2} + 84\cdot 181^{3} + 37\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 66 + 160\cdot 181 + 108\cdot 181^{2} + 181^{3} + 19\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 67 + 180\cdot 181 + 103\cdot 181^{2} + 181^{3} + 41\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 94 + 145\cdot 181 + 135\cdot 181^{2} + 115\cdot 181^{3} + 60\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 126 + 34\cdot 181 + 177\cdot 181^{2} + 176\cdot 181^{3} + 31\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,4)(3,5)(6,8)$ |
| $(1,8)(2,4)(3,5)(6,7)$ |
| $(1,4)(2,7)(3,8)(5,6)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,6)(7,8)$ |
| $(1,6)(4,5)$ |
| $(1,6)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,6)(2,3)(4,5)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,7)(3,8)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,3)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,8)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(2,3)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,4)(3,5)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,6,3)(4,7,5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,6,8)(2,5,3,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,6,5)(2,8,3,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,6,4)(2,8,3,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,6,2)(4,7,5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,6,7)(2,5,3,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.