Properties

Label 4.2e4_3e3_83e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{3} \cdot 83^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$247011984= 2^{4} \cdot 3^{3} \cdot 83^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 15 x^{3} + 15 x^{2} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.3_83.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 8 + \left(46 a + 43\right)\cdot 61 + \left(3 a + 48\right)\cdot 61^{2} + \left(23 a + 48\right)\cdot 61^{3} + \left(29 a + 6\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 57 + \left(14 a + 40\right)\cdot 61 + \left(57 a + 5\right)\cdot 61^{2} + \left(37 a + 7\right)\cdot 61^{3} + \left(31 a + 13\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 7\cdot 61 + 42\cdot 61^{2} + 44\cdot 61^{3} + 38\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 37\cdot 61 + 6\cdot 61^{2} + 5\cdot 61^{3} + 41\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 43 + 39\cdot 61 + \left(52 a + 44\right)\cdot 61^{2} + \left(22 a + 22\right)\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 a + 8 + \left(60 a + 14\right)\cdot 61 + \left(8 a + 35\right)\cdot 61^{2} + \left(38 a + 54\right)\cdot 61^{3} + \left(60 a + 60\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(3,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$-2$
$6$$2$$(2,4)$$0$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)(3,5,6)$$1$
$4$$3$$(1,2,4)$$-2$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,5,2,6,4,3)$$1$
$12$$6$$(2,4)(3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.