Properties

Label 4.2e4_3e3_83.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{3} \cdot 83 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$35856= 2^{4} \cdot 3^{3} \cdot 83 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.3_83.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 + 31\cdot 61 + 51\cdot 61^{2} + 5\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 34 + \left(46 a + 17\right)\cdot 61 + \left(5 a + 56\right)\cdot 61^{2} + \left(15 a + 12\right)\cdot 61^{3} + \left(59 a + 29\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 a + 10 + \left(11 a + 46\right)\cdot 61 + \left(48 a + 47\right)\cdot 61^{2} + \left(42 a + 56\right)\cdot 61^{3} + \left(6 a + 54\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 58 + \left(14 a + 39\right)\cdot 61 + \left(55 a + 15\right)\cdot 61^{2} + \left(45 a + 22\right)\cdot 61^{3} + \left(a + 12\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 5 + \left(49 a + 2\right)\cdot 61 + \left(12 a + 23\right)\cdot 61^{2} + \left(18 a + 51\right)\cdot 61^{3} + \left(54 a + 18\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 + 45\cdot 61 + 49\cdot 61^{2} + 33\cdot 61^{3} + 38\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(2,4)$$2$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,3,5)$$1$
$18$$4$$(1,2,3,4)(5,6)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(1,3,5)(2,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.