Properties

Label 4.2e4_3e3_79e2.5t5.1
Dimension 4
Group $S_5$
Conductor $ 2^{4} \cdot 3^{3} \cdot 79^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2696112= 2^{4} \cdot 3^{3} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{2} - 5 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 107\cdot 139 + 98\cdot 139^{2} + 96\cdot 139^{3} + 71\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 + 92\cdot 139 + 139^{2} + 117\cdot 139^{3} + 87\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 + 6\cdot 139 + 34\cdot 139^{2} + 88\cdot 139^{3} + 106\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 122 + 133\cdot 139 + 47\cdot 139^{2} + 45\cdot 139^{3} + 57\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 + 76\cdot 139 + 95\cdot 139^{2} + 69\cdot 139^{3} + 93\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.