Basic invariants
| Dimension: | $4$ |
| Group: | $\PGL(2,5)$ |
| Conductor: | \(2696112\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 79^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 6.0.10784448.3 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_5$ |
| Parity: | odd |
| Determinant: | 1.3.2t1.a.a |
| Projective image: | $S_5$ |
| Projective stem field: | Galois closure of 6.0.10784448.3 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - 2x^{5} + 4x^{4} - 4x^{3} + 4x^{2} + 4x + 4 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{3} + 4x + 17 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 7 a^{2} + 18 a + \left(12 a^{2} + 4 a + 7\right)\cdot 19 + \left(5 a^{2} + 4 a + 11\right)\cdot 19^{2} + \left(8 a^{2} + 6 a + 18\right)\cdot 19^{3} + \left(10 a^{2} + 12 a + 7\right)\cdot 19^{4} +O(19^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 11 a^{2} + 12 a + 17 + \left(10 a^{2} + 8 a + 14\right)\cdot 19 + \left(9 a^{2} + 17 a + 2\right)\cdot 19^{2} + \left(14 a + 4\right)\cdot 19^{3} + \left(3 a^{2} + 11 a + 7\right)\cdot 19^{4} +O(19^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 15 a^{2} + 18 a + 15 + \left(2 a^{2} + 4 a + 1\right)\cdot 19 + \left(17 a^{2} + 17 a + 5\right)\cdot 19^{2} + \left(12 a^{2} + 6\right)\cdot 19^{3} + \left(13 a^{2} + 9 a + 18\right)\cdot 19^{4} +O(19^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 15 a^{2} + 14 a + 15 + \left(15 a^{2} + 17 a + 4\right)\cdot 19 + \left(18 a^{2} + 13 a + 3\right)\cdot 19^{2} + \left(4 a^{2} + 14 a + 4\right)\cdot 19^{3} + \left(3 a^{2} + 11 a + 3\right)\cdot 19^{4} +O(19^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 8 a^{2} + 6 a + 9 + \left(15 a + 14\right)\cdot 19 + \left(2 a^{2} + 6 a + 2\right)\cdot 19^{2} + \left(a^{2} + 3 a\right)\cdot 19^{3} + \left(2 a^{2} + 17 a\right)\cdot 19^{4} +O(19^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( a^{2} + 8 a + 3 + \left(15 a^{2} + 5 a + 14\right)\cdot 19 + \left(3 a^{2} + 16 a + 12\right)\cdot 19^{2} + \left(10 a^{2} + 16 a + 4\right)\cdot 19^{3} + \left(5 a^{2} + 13 a + 1\right)\cdot 19^{4} +O(19^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $4$ | |
| $10$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ | ✓ |
| $15$ | $2$ | $(1,5)(2,4)$ | $0$ | |
| $20$ | $3$ | $(1,5,4)(2,6,3)$ | $1$ | |
| $30$ | $4$ | $(1,2,3,5)$ | $0$ | |
| $24$ | $5$ | $(1,3,4,2,6)$ | $-1$ | |
| $20$ | $6$ | $(1,2,5,6,4,3)$ | $1$ |