Properties

Label 4.2e4_3e3_71e2.5t5.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 71^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$2177712= 2^{4} \cdot 3^{3} \cdot 71^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{2} + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{3} + 6 x^{2} + 4 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 3 a + \left(4 a^{2} + 2 a\right)\cdot 7 + \left(a^{2} + 5 a + 3\right)\cdot 7^{2} + \left(3 a^{2} + a + 4\right)\cdot 7^{3} + \left(2 a^{2} + 6 a\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 4 a + 6 + \left(a^{2} + 4 a + 1\right)\cdot 7 + \left(a + 5\right)\cdot 7^{2} + \left(2 a^{2} + 2 a + 5\right)\cdot 7^{3} + \left(2 a^{2} + 4 a + 5\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 4 a + 3 + \left(a^{2} + a + 5\right)\cdot 7 + \left(3 a^{2} + 6 a + 1\right)\cdot 7^{2} + \left(4 a^{2} + 2 a + 1\right)\cdot 7^{3} + \left(4 a^{2} + 2 a + 6\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 5 + \left(a^{2} + 6\right)\cdot 7 + \left(5 a^{2} + 4\right)\cdot 7^{2} + \left(a^{2} + 3 a + 3\right)\cdot 7^{3} + \left(2 a^{2} + 3 a + 4\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 2 a + 1 + \left(2 a^{2} + 3\right)\cdot 7 + \left(4 a^{2} + 2 a\right)\cdot 7^{2} + \left(3 a^{2} + 2 a + 3\right)\cdot 7^{3} + \left(a^{2} + 3 a + 3\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + a + \left(2 a^{2} + 5 a + 4\right)\cdot 7 + \left(6 a^{2} + 5 a + 5\right)\cdot 7^{2} + \left(5 a^{2} + a + 2\right)\cdot 7^{3} + a\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,5)(2,6)(3,4)$$2$
$15$$2$$(2,4)(3,6)$$0$
$20$$3$$(1,5,3)(2,6,4)$$1$
$30$$4$$(2,5,3,4)$$0$
$24$$5$$(1,6,3,5,2)$$-1$
$20$$6$$(1,6,5,4,3,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.