Properties

Label 4.2e4_3e3_137e2.10t12.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 137^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$8108208= 2^{4} \cdot 3^{3} \cdot 137^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 + 12\cdot 37 + 21\cdot 37^{2} + 4\cdot 37^{3} + 33\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 6 + \left(24 a + 36\right)\cdot 37 + 36\cdot 37^{2} + \left(21 a + 22\right)\cdot 37^{3} + \left(30 a + 22\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 9 + \left(12 a + 12\right)\cdot 37 + \left(36 a + 15\right)\cdot 37^{2} + \left(15 a + 32\right)\cdot 37^{3} + \left(6 a + 12\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 13 + \left(36 a + 28\right)\cdot 37 + \left(20 a + 20\right)\cdot 37^{2} + 13 a\cdot 37^{3} + \left(17 a + 8\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 20 + 14\cdot 37 + \left(16 a + 31\right)\cdot 37^{2} + \left(23 a + 33\right)\cdot 37^{3} + \left(19 a + 26\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 + 7\cdot 37 + 22\cdot 37^{2} + 16\cdot 37^{3} + 7\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,6,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,5)(2,6)(3,4)$$-2$
$15$$2$$(2,6)(3,5)$$0$
$20$$3$$(1,2,5)(3,4,6)$$1$
$30$$4$$(2,3,6,5)$$0$
$24$$5$$(1,3,5,4,2)$$-1$
$20$$6$$(1,6,2,3,5,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.