Properties

Label 4.2e4_3e3_11e2_17e2.10t12.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 11^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$15106608= 2^{4} \cdot 3^{3} \cdot 11^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + 6 x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 19 + \left(8 a + 55\right)\cdot 61 + \left(35 a + 27\right)\cdot 61^{2} + \left(37 a + 45\right)\cdot 61^{3} + \left(4 a + 49\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 28\cdot 61 + 39\cdot 61^{2} + 57\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 25\cdot 61 + 43\cdot 61^{2} + 21\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 12 + \left(52 a + 10\right)\cdot 61 + \left(25 a + 54\right)\cdot 61^{2} + \left(23 a + 47\right)\cdot 61^{3} + \left(56 a + 16\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 42 + \left(11 a + 24\right)\cdot 61 + 29 a\cdot 61^{2} + \left(52 a + 24\right)\cdot 61^{3} + \left(50 a + 2\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 40 + \left(49 a + 38\right)\cdot 61 + \left(31 a + 17\right)\cdot 61^{2} + \left(8 a + 47\right)\cdot 61^{3} + 10 a\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6,5,3,2)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)(3,6)(4,5)$$-2$
$15$$2$$(1,2)(4,6)$$0$
$20$$3$$(1,6,3)(2,4,5)$$1$
$30$$4$$(1,4,2,6)$$0$
$24$$5$$(1,3,4,6,5)$$-1$
$20$$6$$(1,4,6,5,3,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.