Properties

Label 4.2e4_3e2_7e4.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$345744= 2^{4} \cdot 3^{2} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{2} - 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 12\cdot 193 + 24\cdot 193^{2} + 118\cdot 193^{3} + 51\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 151\cdot 193 + 188\cdot 193^{2} + 147\cdot 193^{3} + 55\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 + 35\cdot 193 + 74\cdot 193^{2} + 138\cdot 193^{3} + 165\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 + 91\cdot 193 + 119\cdot 193^{2} + 122\cdot 193^{3} + 133\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 97 + 169\cdot 193 + 124\cdot 193^{2} + 167\cdot 193^{3} + 86\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 50\cdot 193 + 127\cdot 193^{2} + 104\cdot 193^{3} + 69\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 171 + 107\cdot 193 + 161\cdot 193^{2} + 106\cdot 193^{3} + 159\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 190 + 153\cdot 193 + 144\cdot 193^{2} + 58\cdot 193^{3} + 49\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(4,6)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,3,6,7,5,8,4,2)$
$(1,6,5,4)(2,3,7,8)$
$(1,4)(2,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,7)(3,8)(4,6)$$-4$
$2$$2$$(1,5)(4,6)$$0$
$4$$2$$(1,4)(2,7)(5,6)$$0$
$4$$2$$(1,2)(3,4)(5,7)(6,8)$$0$
$4$$2$$(1,6)(2,7)(4,5)$$0$
$2$$4$$(1,6,5,4)(2,3,7,8)$$0$
$2$$4$$(1,4,5,6)(2,3,7,8)$$0$
$4$$4$$(1,3,5,8)(2,4,7,6)$$0$
$4$$8$$(1,3,6,7,5,8,4,2)$$0$
$4$$8$$(1,3,4,2,5,8,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.