Properties

Label 4.2e4_3e2_7e2_29e2.8t22.5c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$5934096= 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 9 x^{6} + 24 x^{5} + 36 x^{4} - 110 x^{3} - 109 x^{2} + 184 x + 193 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 2\cdot 109 + 90\cdot 109^{2} + 34\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 37\cdot 109 + 7\cdot 109^{2} + 49\cdot 109^{3} + 78\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 55\cdot 109 + 50\cdot 109^{2} + 60\cdot 109^{3} + 12\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 55\cdot 109 + 91\cdot 109^{2} + 94\cdot 109^{3} + 93\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 53\cdot 109 + 99\cdot 109^{2} + 64\cdot 109^{3} + 61\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 + 14\cdot 109 + 70\cdot 109^{2} + 73\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 5\cdot 109 + 20\cdot 109^{2} + 47\cdot 109^{3} + 27\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 85 + 103\cdot 109 + 6\cdot 109^{2} + 11\cdot 109^{3} + 35\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,7)(2,5,6,8)$
$(1,4)(2,8)(3,7)(5,6)$
$(1,4,3,7)(2,8,6,5)$
$(1,7)(2,8)(3,4)(5,6)$
$(1,5)(2,4)(3,8)(6,7)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,3)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,6)(4,7)(5,8)$$-4$
$2$$2$$(1,4)(2,8)(3,7)(5,6)$$0$
$2$$2$$(1,5)(2,4)(3,8)(6,7)$$0$
$2$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$2$$2$$(1,2)(3,6)(4,8)(5,7)$$0$
$2$$2$$(1,3)(4,7)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$2$$(1,6)(2,3)(4,8)(5,7)$$0$
$2$$2$$(4,7)(5,8)$$0$
$2$$2$$(1,3)(5,8)$$0$
$2$$4$$(1,4,3,7)(2,5,6,8)$$0$
$2$$4$$(1,2,3,6)(4,5,7,8)$$0$
$2$$4$$(1,7,3,4)(2,5,6,8)$$0$
$2$$4$$(1,8,3,5)(2,4,6,7)$$0$
$2$$4$$(1,8,3,5)(2,7,6,4)$$0$
$2$$4$$(1,6,3,2)(4,5,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.