Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 2\cdot 109 + 90\cdot 109^{2} + 34\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 37\cdot 109 + 7\cdot 109^{2} + 49\cdot 109^{3} + 78\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 55\cdot 109 + 50\cdot 109^{2} + 60\cdot 109^{3} + 12\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 32 + 55\cdot 109 + 91\cdot 109^{2} + 94\cdot 109^{3} + 93\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 37 + 53\cdot 109 + 99\cdot 109^{2} + 64\cdot 109^{3} + 61\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 63 + 14\cdot 109 + 70\cdot 109^{2} + 73\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 65 + 5\cdot 109 + 20\cdot 109^{2} + 47\cdot 109^{3} + 27\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 85 + 103\cdot 109 + 6\cdot 109^{2} + 11\cdot 109^{3} + 35\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,3,7)(2,5,6,8)$ |
| $(1,4)(2,8)(3,7)(5,6)$ |
| $(1,4,3,7)(2,8,6,5)$ |
| $(1,7)(2,8)(3,4)(5,6)$ |
| $(1,5)(2,4)(3,8)(6,7)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,3)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,6)(4,7)(5,8)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,8)(3,7)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,4)(3,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,7)(3,8)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,6)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,4)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,3)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(4,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,4,3,7)(2,5,6,8)$ | $0$ |
| $2$ | $4$ | $(1,2,3,6)(4,5,7,8)$ | $0$ |
| $2$ | $4$ | $(1,7,3,4)(2,5,6,8)$ | $0$ |
| $2$ | $4$ | $(1,8,3,5)(2,4,6,7)$ | $0$ |
| $2$ | $4$ | $(1,8,3,5)(2,7,6,4)$ | $0$ |
| $2$ | $4$ | $(1,6,3,2)(4,5,7,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.