Properties

Label 4.2e4_3e2_7e2_13e2.8t22.9c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1192464= 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - x^{6} + 16 x^{5} + x^{4} - 24 x^{3} - 12 x^{2} + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 673 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 70 + 34\cdot 673 + 139\cdot 673^{2} + 260\cdot 673^{3} + 4\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 102 + 366\cdot 673 + 242\cdot 673^{2} + 99\cdot 673^{3} + 345\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 107 + 424\cdot 673 + 74\cdot 673^{2} + 172\cdot 673^{3} + 656\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 291 + 93\cdot 673 + 646\cdot 673^{2} + 593\cdot 673^{3} + 313\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 425 + 425\cdot 673 + 467\cdot 673^{2} + 635\cdot 673^{3} + 199\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 525 + 402\cdot 673 + 157\cdot 673^{2} + 617\cdot 673^{3} + 175\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 556 + 7\cdot 673 + 159\cdot 673^{2} + 462\cdot 673^{3} + 337\cdot 673^{4} +O\left(673^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 620 + 264\cdot 673 + 132\cdot 673^{2} + 524\cdot 673^{3} + 658\cdot 673^{4} +O\left(673^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,8)(2,7)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.