Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 673 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 70 + 34\cdot 673 + 139\cdot 673^{2} + 260\cdot 673^{3} + 4\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 102 + 366\cdot 673 + 242\cdot 673^{2} + 99\cdot 673^{3} + 345\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 107 + 424\cdot 673 + 74\cdot 673^{2} + 172\cdot 673^{3} + 656\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 291 + 93\cdot 673 + 646\cdot 673^{2} + 593\cdot 673^{3} + 313\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 425 + 425\cdot 673 + 467\cdot 673^{2} + 635\cdot 673^{3} + 199\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 525 + 402\cdot 673 + 157\cdot 673^{2} + 617\cdot 673^{3} + 175\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 556 + 7\cdot 673 + 159\cdot 673^{2} + 462\cdot 673^{3} + 337\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 620 + 264\cdot 673 + 132\cdot 673^{2} + 524\cdot 673^{3} + 658\cdot 673^{4} +O\left(673^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(2,7)(4,5)$ |
| $(3,6)(4,5)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,8)(4,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,5,7,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.