Properties

Label 4.2e4_3e2_7e2_13e2.8t22.10c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1192464= 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} - 8 x^{5} - 4 x^{4} + 26 x^{3} + 60 x^{2} + 62 x + 37 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 35 + 154\cdot 337 + 336\cdot 337^{2} + 240\cdot 337^{3} + 134\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 82 + 114\cdot 337 + 59\cdot 337^{2} + 217\cdot 337^{3} + 154\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 98 + 11\cdot 337 + 156\cdot 337^{2} + 335\cdot 337^{3} + 117\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 122 + 57\cdot 337 + 122\cdot 337^{2} + 217\cdot 337^{3} + 266\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 130 + 272\cdot 337 + 29\cdot 337^{2} + 314\cdot 337^{3} + 18\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 135 + 88\cdot 337 + 147\cdot 337^{2} + 126\cdot 337^{3} + 267\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 152 + 6\cdot 337 + 323\cdot 337^{2} + 16\cdot 337^{3} + 217\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 257 + 306\cdot 337 + 173\cdot 337^{2} + 216\cdot 337^{3} + 170\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,5)(3,7)(4,8)$
$(1,7)(2,8)(3,6)(4,5)$
$(1,6,2,5)(3,8,4,7)$
$(1,2)(5,6)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,6,2,5)(3,7,4,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-4$
$2$$2$$(1,6)(2,5)(3,7)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(1,3)(2,4)(5,8)(6,7)$$0$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,2)(5,6)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(3,4)(5,6)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,6,2,5)(3,8,4,7)$$0$
$2$$4$$(1,3,2,4)(5,7,6,8)$$0$
$2$$4$$(1,8,2,7)(3,6,4,5)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
$2$$4$$(1,8,2,7)(3,5,4,6)$$0$
$2$$4$$(1,4,2,3)(5,7,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.