Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 + 154\cdot 337 + 336\cdot 337^{2} + 240\cdot 337^{3} + 134\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 82 + 114\cdot 337 + 59\cdot 337^{2} + 217\cdot 337^{3} + 154\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 98 + 11\cdot 337 + 156\cdot 337^{2} + 335\cdot 337^{3} + 117\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 122 + 57\cdot 337 + 122\cdot 337^{2} + 217\cdot 337^{3} + 266\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 130 + 272\cdot 337 + 29\cdot 337^{2} + 314\cdot 337^{3} + 18\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 135 + 88\cdot 337 + 147\cdot 337^{2} + 126\cdot 337^{3} + 267\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 152 + 6\cdot 337 + 323\cdot 337^{2} + 16\cdot 337^{3} + 217\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 257 + 306\cdot 337 + 173\cdot 337^{2} + 216\cdot 337^{3} + 170\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(2,5)(3,7)(4,8)$ |
| $(1,7)(2,8)(3,6)(4,5)$ |
| $(1,6,2,5)(3,8,4,7)$ |
| $(1,2)(5,6)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,6,2,5)(3,7,4,8)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $-4$ |
| $2$ | $2$ | $(1,6)(2,5)(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,6)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,2)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(3,4)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,6,2,5)(3,8,4,7)$ | $0$ |
| $2$ | $4$ | $(1,3,2,4)(5,7,6,8)$ | $0$ |
| $2$ | $4$ | $(1,8,2,7)(3,6,4,5)$ | $0$ |
| $2$ | $4$ | $(1,5,2,6)(3,8,4,7)$ | $0$ |
| $2$ | $4$ | $(1,8,2,7)(3,5,4,6)$ | $0$ |
| $2$ | $4$ | $(1,4,2,3)(5,7,6,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.