Properties

Label 4.2e4_3e2_7e2_11e2.8t22.5
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$853776= 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 9 x^{6} - 4 x^{5} - 16 x^{4} + 34 x^{3} - 20 x^{2} - 24 x + 37 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17\cdot 37 + 10\cdot 37^{2} + 30\cdot 37^{3} + 9\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 8\cdot 37 + 14\cdot 37^{2} + 8\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 7\cdot 37 + 28\cdot 37^{2} + 35\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 3\cdot 37 + 21\cdot 37^{2} + 9\cdot 37^{3} + 32\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 9\cdot 37 + 14\cdot 37^{2} + 35\cdot 37^{3} + 17\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 + 37 + 28\cdot 37^{2} + 20\cdot 37^{3} + 21\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 + 19\cdot 37 + 11\cdot 37^{2} + 12\cdot 37^{3} + 36\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 30 + 7\cdot 37 + 20\cdot 37^{2} + 32\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,3,2)(4,8,5,7)$
$(1,2,3,6)(4,8,5,7)$
$(1,2)(3,6)(4,8)(5,7)$
$(1,2)(3,6)(4,7)(5,8)$
$(1,8)(2,4)(3,7)(5,6)$
$(1,7)(2,4)(3,8)(5,6)$
$(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $-4$
$2$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $0$
$2$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $0$
$2$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $0$
$2$ $2$ $(4,5)(7,8)$ $0$
$2$ $2$ $(2,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $0$
$2$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$
$2$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$
$2$ $2$ $(2,6)(4,5)$ $0$
$2$ $4$ $(1,6,3,2)(4,8,5,7)$ $0$
$2$ $4$ $(1,2,3,6)(4,8,5,7)$ $0$
$2$ $4$ $(1,5,3,4)(2,8,6,7)$ $0$
$2$ $4$ $(1,8,3,7)(2,4,6,5)$ $0$
$2$ $4$ $(1,7,3,8)(2,4,6,5)$ $0$
$2$ $4$ $(1,5,3,4)(2,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.