Properties

Label 4.2e4_3e2_7_29e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 3^{2} \cdot 7 \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$847728= 2^{4} \cdot 3^{2} \cdot 7 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 7 x^{3} - 2 x^{2} - 9 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 40 + \left(37 a + 42\right)\cdot 53 + \left(48 a + 11\right)\cdot 53^{2} + \left(25 a + 37\right)\cdot 53^{3} + 21\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 45 + \left(15 a + 46\right)\cdot 53 + \left(4 a + 9\right)\cdot 53^{2} + \left(27 a + 39\right)\cdot 53^{3} + \left(52 a + 50\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 51 + \left(21 a + 12\right)\cdot 53 + \left(27 a + 37\right)\cdot 53^{2} + \left(28 a + 18\right)\cdot 53^{3} + \left(34 a + 42\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 + 3\cdot 53 + 47\cdot 53^{2} + 38\cdot 53^{3} + 34\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 a + 42 + \left(31 a + 33\right)\cdot 53 + \left(25 a + 19\right)\cdot 53^{2} + \left(24 a + 52\right)\cdot 53^{3} + \left(18 a + 45\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 18\cdot 53 + 33\cdot 53^{2} + 25\cdot 53^{3} + 16\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$0$
$6$$2$$(1,2)$$2$
$9$$2$$(1,2)(3,5)$$0$
$4$$3$$(1,2,4)(3,5,6)$$-2$
$4$$3$$(3,5,6)$$1$
$18$$4$$(1,5,2,3)(4,6)$$0$
$12$$6$$(1,3,2,5,4,6)$$0$
$12$$6$$(1,2)(3,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.