Properties

Label 4.2e4_3e2_73e3.8t29.2c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{4} \cdot 3^{2} \cdot 73^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$56018448= 2^{4} \cdot 3^{2} \cdot 73^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + x^{5} - x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.73.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 733 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 178 + 382\cdot 733 + 221\cdot 733^{2} + 221\cdot 733^{3} + 178\cdot 733^{4} + 294\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 238 + 386\cdot 733 + 410\cdot 733^{2} + 670\cdot 733^{3} + 16\cdot 733^{4} + 182\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 430 + 720\cdot 733 + 291\cdot 733^{2} + 696\cdot 733^{3} + 489\cdot 733^{4} + 50\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 440 + 74\cdot 733 + 361\cdot 733^{2} + 197\cdot 733^{3} + 367\cdot 733^{4} + 640\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 534 + 9\cdot 733 + 644\cdot 733^{2} + 364\cdot 733^{3} + 576\cdot 733^{4} + 702\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 550 + 419\cdot 733 + 727\cdot 733^{2} + 597\cdot 733^{3} + 88\cdot 733^{4} + 326\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 632 + 410\cdot 733 + 367\cdot 733^{2} + 315\cdot 733^{3} + 671\cdot 733^{4} + 485\cdot 733^{5} +O\left(733^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 664 + 527\cdot 733 + 640\cdot 733^{2} + 600\cdot 733^{3} + 542\cdot 733^{4} + 249\cdot 733^{5} +O\left(733^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)$
$(1,2)(3,6)(4,5)(7,8)$
$(2,6)(4,8)$
$(2,4)(6,8)$
$(1,3)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-4$
$2$$2$$(1,3)(5,7)$$0$
$2$$2$$(1,5)(2,4)(3,7)(6,8)$$0$
$2$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$4$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$4$$2$$(1,5)(3,7)$$-2$
$4$$2$$(1,3)(2,6)$$0$
$4$$2$$(1,6)(2,3)(4,5)(7,8)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$2$
$4$$4$$(1,6,3,2)(4,5,8,7)$$0$
$4$$4$$(1,2,3,6)(4,5,8,7)$$0$
$4$$4$$(1,7,3,5)(2,4,6,8)$$0$
$8$$4$$(1,4,5,2)(3,8,7,6)$$0$
$8$$4$$(1,8,7,6)(2,3,4,5)$$0$
$8$$4$$(1,7,3,5)(2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.