Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 733 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 178 + 382\cdot 733 + 221\cdot 733^{2} + 221\cdot 733^{3} + 178\cdot 733^{4} + 294\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 238 + 386\cdot 733 + 410\cdot 733^{2} + 670\cdot 733^{3} + 16\cdot 733^{4} + 182\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 430 + 720\cdot 733 + 291\cdot 733^{2} + 696\cdot 733^{3} + 489\cdot 733^{4} + 50\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 440 + 74\cdot 733 + 361\cdot 733^{2} + 197\cdot 733^{3} + 367\cdot 733^{4} + 640\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 534 + 9\cdot 733 + 644\cdot 733^{2} + 364\cdot 733^{3} + 576\cdot 733^{4} + 702\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 550 + 419\cdot 733 + 727\cdot 733^{2} + 597\cdot 733^{3} + 88\cdot 733^{4} + 326\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 632 + 410\cdot 733 + 367\cdot 733^{2} + 315\cdot 733^{3} + 671\cdot 733^{4} + 485\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 664 + 527\cdot 733 + 640\cdot 733^{2} + 600\cdot 733^{3} + 542\cdot 733^{4} + 249\cdot 733^{5} +O\left(733^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,6)$ |
| $(1,2)(3,6)(4,5)(7,8)$ |
| $(2,6)(4,8)$ |
| $(2,4)(6,8)$ |
| $(1,3)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,6)(4,8)(5,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,4)(3,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,5)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,6)(4,5)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(3,7)$ |
$-2$ |
| $4$ |
$2$ |
$(1,3)(2,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,3)(4,5)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$2$ |
| $4$ |
$4$ |
$(1,6,3,2)(4,5,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,3,6)(4,5,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,3,5)(2,4,6,8)$ |
$0$ |
| $8$ |
$4$ |
$(1,4,5,2)(3,8,7,6)$ |
$0$ |
| $8$ |
$4$ |
$(1,8,7,6)(2,3,4,5)$ |
$0$ |
| $8$ |
$4$ |
$(1,7,3,5)(2,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.